1,285 research outputs found

    Origin of Rashba-splitting in the quantized subbands at Bi2Se3 surface

    Full text link
    We study the band structure of the Bi2Se3\text{Bi}_2\text{Se}_3 topological insulator (111) surface using angle-resolved photoemission spectroscopy. We examine the situation where two sets of quantized subbands exhibiting different Rashba spin-splitting are created via bending of the conduction (CB) and the valence (VB) bands at the surface. While the CB subbands are strongly Rashba spin-split, the VB subbands do not exhibit clear spin-splitting. We find that CB and VB experience similar band bending magnitudes, which means, a spin-splitting discrepancy due to different surface potential gradients can be excluded. On the other hand, by comparing the experimental band structure to first principles LMTO band structure calculations, we find that the strongly spin-orbit coupled Bi 6pp orbitals dominate the orbital character of CB, whereas their admixture to VB is rather small. The spin-splitting discrepancy is, therefore, traced back to the difference in spin-orbit coupling between CB and VB in the respective subbands' regions

    Tunable spin-gaps in a quantum-confined geometry

    Full text link
    We have studied the interplay of a giant spin-orbit splitting and of quantum confinement in artificial Bi-Ag-Si trilayer structures. Angle-resolved photoelectron spectroscopy (ARPES) reveals the formation of a complex spin-dependent gap structure, which can be tuned by varying the thickness of the Ag buffer layer. This provides a means to tailor the electronic structure at the Fermi energy, with potential applications for silicon-compatible spintronic devices

    The 'Adat' institutionand the Management of Grand Forest 'Herman Yohannes' in Indonesian Timor: The Role of Design Principles for Sustainable Management of Common Pool Resources

    Get PDF
    __Abstract__ Local success stories of sustainable forest management can inspire scientists and decision-makers. This article analyses the traditional ‘Adat’ institution that plays a role in the management of Grand Forest Park ‘Herman Yohannes’, in the Western part of Timor where the Adat forest management regulation has been formally restored. The original set of design principles for sustainable management of common pool resources of Elinor Ostrom (1990) has been used in this study as an analytical framework for understanding the role of the Adat institution in respect to the forest. In the park, the local community applies Adat for protection and management of the forest that has been its home for centuries. It appears that Ostrom’s design principles can be identified in the current Adat institution and play a role in the sustainable management of the forest. Although many other variables can lead to success or failure of institutions, the original (internal) design principles are still valuable as a practical tool for building institutions that are – under certain conditions – able to sustain common pool resources. The findings confirm the importance of traditional institutions in successful forest management. The study recommends that decision-makers take into account existing traditional management systems that have shown long term functionality

    A Meta-Analysis of Procedures to Change Implicit Measures

    Get PDF
    Using a novel technique known as network meta-analysis, we synthesized evidence from 492 studies (87,418 participants) to investigate the effectiveness of procedures in changing implicit measures, which we define as response biases on implicit tasks. We also evaluated these procedures’ effects on explicit and behavioral measures. We found that implicit measures can be changed, but effects are often relatively weak (|ds| \u3c .30). Most studies focused on producing short-term changes with brief, single-session manipulations. Procedures that associate sets of concepts, invoke goals or motivations, or tax mental resources changed implicit measures the most, whereas procedures that induced threat, affirmation, or specific moods/emotions changed implicit measures the least. Bias tests suggested that implicit effects could be inflated relative to their true population values. Procedures changed explicit measures less consistently and to a smaller degree than implicit measures and generally produced trivial changes in behavior. Finally, changes in implicit measures did not mediate changes in explicit measures or behavior. Our findings suggest that changes in implicit measures are possible, but those changes do not necessarily translate into changes in explicit measures or behavior

    Tuning independently Fermi energy and spin splitting in Rashba systems: Ternary surface alloys on Ag(111)

    Full text link
    By detailed first-principles calculations we show that the Fermi energy and the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can be independently tuned by choosing the concentrations of Bi and Pb. The findings are explained by three fundamental mechanisms, namely the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and band filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba energy, and the Fermi energy of the surface states in the complete range of concentrations. Our results suggest to investigate experimentally effects which rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting and band filling.Comment: 11 pages, 3 figure

    Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections

    Full text link
    Motivated by recent scanning tunneling microscopy experiments on single magnetic impurities on superconducting surfaces, we present here a comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound states and (multiple) Andreev reflections. Our theory is based on a combination of an Anderson model with broken spin degeneracy and nonequilibrium Green's function techniques that allows us to describe the electronic transport through a magnetic impurity coupled to superconducting leads for arbitrary junction transparency. Using this combination we are able to elucidate the different tunneling processes that give a significant contribution to the subgap transport. In particular, we predict the occurrence of a large variety of Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly differ from the standard Andreev processes in non-magnetic systems. Moreover, we provide concrete guidelines on how to experimentally identify the subgap features originating from these tunneling events. Overall, our work provides new insight into the role of the spin degree of freedom in Andreev transport physics.Comment: 15 pages, 10 figure

    Silicon surface with giant spin-splitting

    Full text link
    We demonstrate the induction of a giant Rashba-type spin-splitting on a semiconducting substrate by means of a Bi trimer adlayer on a Si(111) wafer. The in-plane inversion symmetry is broken so that the in-plane potential gradient induces a giant spin-splitting with a Rashba energy of about 140 meV, which is more than an order of magnitude larger than what has previously been reported for any semiconductor heterostructure. The separation of the electronic states is larger than their lifetime broadening, which has been directly observed with angular resolved photoemission spectroscopy. The experimental results are confirmed by relativistic first-principles calculations. We envision important implications for basic phenomena as well as for the semiconductor based technology

    Nieuwe inzichten in de interactie tussen sorghum en het parasitaire onkruid Striga hermontica

    Get PDF
    Striga hermonthica (Del.) Benth. is een parasitaire plant uit de Orobanchaceae familie. De soort komt van oorsprong voor in Afrika en hecht zich aan de wortels van belangrijke voedselgewassen als maïs, sorghum, gierst en rijst. In grote delen van Afrika heeft Striga zich ontwikkeld tot de belangrijkste groeireducerende factor. Veelvuldig is waargenomen dat de problemen met Striga toenemen wanneer de bodemvruchbaarheid afneem

    Tracking primary thermalization events in graphene with photoemission at extreme timescales

    Full text link
    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is instead predicted to be dominant at the earliest time delays. Here, <8<8 femtosecond extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time- and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme timescales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure
    • …
    corecore