10 research outputs found

    The relation between inflammation and neurodegeneration in multiple sclerosis brains

    Get PDF
    Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease

    Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis

    Get PDF
    In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening

    Brain Pathology / Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging

    No full text
    Iron accumulates with age in the normal human brain. This process is altered at several levels in the brain of multiple sclerosis (MS) patients. Since iron is mainly stored in oligodendrocytes and myelin in the normal brain, its liberation in demyelinating lesions may amplify tissue damage in demyelinating lesions and its uptake in macrophages and microglia may help to more precisely define activity stages of the lesions. In addition, glia cells change their iron import, export and storage properties in MS lesions, which is reflected by alterations in the expression of iron transport molecules. Changes of iron distribution in the brain can be reliably detected by MRI, particularly upon application of Ultrahigh magnetic field (7 Tesla). Ironsensitive MRI allows to more accurately distinguish the lesions in MS from those in other inflammatory brain diseases, to visualize a subset of slowly expanding lesions in the progressive stage of MS and to increase the sensitivity for lesion detection in the gray matter, such as the cerebral cortex or deep gray matter nuclei.(VLID)339636

    Complete neurologic and cognitive recovery after plasmapheresis in a patient with chronic inflammatory demyelinating polyneuropathy after allogeneic hematopoietic stem cell transplantation

    Get PDF
    Neurologic complications after allogeneic hematopoietic stem cell transplantation (HSCT) are rare but poorly understood. We present a case report of a 57-year-old-male patient who was diagnosed in 2009 with acute myeloid leukemia (AML). He received two standard induction chemotherapies, as well as a following consolidation. Six months later, an allogeneic HSCT was performed. Shortly after HSCT the patient developed progressive polyneuropathy of the lower legs and hypoesthesia. Five months later a severe dementia followed. All images of the brain and spine showed no specific pathologies. High dose corticosteroids and immunoglobulins did not improve the neurologic symptoms. Due to severe worsening of the neuropsychiatric status and the clinical presentation, chronic inflammatory demyelinating polyneuropathy (CIDP) was suspected. Therefore, the patient received ten cycles of plasmapheresis. The patient showed a significant improvement of the neuropsychiatric symptoms and cognitive status. CONCLUSIONS: Immune mediated neuropathies after allogeneic HSCT, such as CIDP, have great variability in symptoms and presentation and are challenging to diagnose and treat. Plasmapheresis is a safe and efficient treatment for patients with unclear persisting autoimmune neuropathy after HSCT.(VLID)346787

    Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes

    No full text
    Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5–10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace “dummy scans” in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25–50 and faster than 3D EPI by a factor of 3–5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods

    Slow expansion of multiple sclerosis iron rim lesions : pathology and 7 T magnetic resonance imaging

    No full text
    In multiple sclerosis (MS), iron accumulates inside activated microglia/macrophages at edges of some chronic demyelinated lesions, forming rims. In susceptibility-based magnetic resonance imaging at 7 T, iron-laden microglia/macrophages induce a rim of decreased signal at lesion edges and have been associated with slowly expanding lesions. We aimed to determine (1) what lesion types and stages are associated with iron accumulation at their edges, (2) what cells at the lesion edges accumulate iron and what is their activation status, (3) how reliably can iron accumulation at the lesion edge be detected by 7 T magnetic resonance imaging (MRI), and (4) if lesions with rims enlarge over time in vivo, when compared to lesions without rims. Double-hemispheric brain sections of 28 MS cases were stained for iron, myelin, and microglia/macrophages. Prior to histology, 4 of these 28 cases were imaged at 7 T using post-mortem susceptibility-weighted imaging. In vivo, seven MS patients underwent annual neurological examinations and 7 T MRI for 3.5 years, using a fluid attenuated inversion recovery/susceptibility-weighted imaging fusion sequence. Pathologically, we found iron rims around slowly expanding and some inactive lesions but hardly around remyelinated shadow plaques. Iron in rims was mainly present in microglia/macrophages with a pro-inflammatory activation status, but only very rarely in astrocytes. Histological validation of post-mortem susceptibility-weighted imaging revealed a quantitative threshold of iron-laden microglia when a rim was visible. Slowly expanding lesions significantly exceeded this threshold, when compared with inactive lesions (p = 0.003). We show for the first time that rim lesions significantly expanded in vivo after 3.5 years, compared to lesions without rims (p = 0.003). Thus, slow expansion of MS lesions with rims, which reflects chronic lesion activity, may, in the future, become an MRI marker for disease activity in MS.(VLID)349733

    Trattato italiano di elettrofisiologia ed elettrostimolazione cardiaca

    No full text
    corecore