137 research outputs found
Cross-Newell equations for hexagons and triangles
The Cross-Newell equations for hexagons and triangles are derived for general
real gradient systems, and are found to be in flux-divergence form. Specific
examples of complex governing equations that give rise to hexagons and
triangles and which have Lyapunov functionals are also considered, and explicit
forms of the Cross-Newell equations are found in these cases. The general
nongradient case is also discussed; in contrast with the gradient case, the
equations are not flux-divergent. In all cases, the phase stability boundaries
and modes of instability for general distorted hexagons and triangles can be
recovered from the Cross-Newell equations.Comment: 24 pages, 1 figur
The Spatio-Temporal Structure of Spiral-Defect Chaos
We present a study of the recently discovered spatially-extended chaotic
state known as spiral-defect chaos, which occurs in low-Prandtl-number,
large-aspect-ratio Rayleigh-Benard convection. We employ the modulus squared of
the space-time Fourier transform of time series of two-dimensional shadowgraph
images to construct the structure factor .
This analysis is used to characterize the average spatial and temporal scales
of the chaotic state. We find that the correlation length and time can be
described by power-law dependences on the reduced Rayleigh number .
These power laws have as yet no theoretical explanation.Comment: RevTex 38 pages with 13 figures. Due to their large size, some
figures are stored as separate gif images. The paper with included hi-res eps
figures (981kb compressed, 3.5Mb uncompressed) is available at
ftp://mobydick.physics.utoronto.ca/pub/MBCA96.tar.gz An mpeg movie and
samples of data are also available at
ftp://mobydick.physics.utoronto.ca/pub/. Paper submitted to Physica
Do quasi-regular structures really exist in the solar photosphere? I. Observational evidence
Two series of solar-granulation images -- the La Palma series of 5 June 1993
and the SOHO MDI series of 17--18 January 1997 -- are analysed both
qualitatively and quantitatively. New evidence is presented for the existence
of long-lived, quasi-regular structures (first reported by Getling and Brandt
(2002)), which no longer appear unusual in images averaged over 1--2-h time
intervals. Such structures appear as families of light and dark concentric
rings or families of light and dark parallel strips (``ridges'' and
``trenches'' in the brightness distributions). In some cases, rings are
combined with radial ``spokes'' and can thus form ``web'' patterns. The
characteristic width of a ridge or trench is somewhat larger than the typical
size of granules. Running-average movies constructed from the series of images
are used to seek such structures. An algorithm is developed to obtain, for
automatically selected centres, the radial distributions of the azimuthally
averaged intensity, which highlight the concentric-ring patterns. We also
present a time-averaged granulation image processed with a software package
intended for the detection of geological structures in aerospace images. A
technique of running-average-based correlations between the brightness
variations at various points of the granular field is developed and indications
are found for a dynamical link between the emergence and sinking of hot and
cool parcels of the solar plasma. In particular, such a correlation analysis
confirms our suggestion that granules -- overheated blobs -- may repeatedly
emerge on the solar surface. Based on our study, the critical remarks by Rast
(2002) on the original paper by Getling and Brandt (2002) can be dismissed.Comment: 21 page, 8 figures; accepted by "Solar Physics
Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection
Possibility of asymmetric square convection is investigated numerically using
a few mode Lorenz-like model for thermal convection in Boussinesq fluids
confined between two stress free and conducting flat boundaries. For relatively
large value of Rayleigh number, the stationary rolls become unstable and
asymmetric squares appear as standing waves at the onset of secondary
instability. Asymmetric squares, two dimensional rolls and again asymmetric
squares with their corners shifted by half a wavelength form a stable limit
cycle.Comment: 8 pages, 7 figure
A model for interacting instabilities and texture dynamics of patterns
A simple model to study interacting instabilities and textures of resulting
patterns for thermal convection is presented. The model consisting of
twelve-mode dynamical system derived for periodic square lattice describes
convective patterns in the form of stripes and patchwork quilt. The interaction
between stationary zig-zag stripes and standing patchwork quilt pattern leads
to spatiotemporal patterns of twisted patchwork quilt. Textures of these
patterns, which depend strongly on Prandtl number, are investigated numerically
using the model. The model also shows an interesting possibility of a
multicritical point, where stability boundaries of four different structures
meet.Comment: 4 pages including 4 figures, page width revise
Mean flow and spiral defect chaos in Rayleigh-Benard convection
We describe a numerical procedure to construct a modified velocity field that
does not have any mean flow. Using this procedure, we present two results.
Firstly, we show that, in the absence of mean flow, spiral defect chaos
collapses to a stationary pattern comprising textures of stripes with angular
bends. The quenched patterns are characterized by mean wavenumbers that
approach those uniquely selected by focus-type singularities, which, in the
absence of mean flow, lie at the zig-zag instability boundary. The quenched
patterns also have larger correlation lengths and are comprised of rolls with
less curvature. Secondly, we describe how mean flow can contribute to the
commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of mean flow, rolls begin to terminate into
lateral walls at an oblique angle. This obliqueness increases with Rayleigh
number.Comment: 14 pages, 19 figure
Pattern Formation and Dynamics in Rayleigh-B\'{e}nard Convection: Numerical Simulations of Experimentally Realistic Geometries
Rayleigh-B\'{e}nard convection is studied and quantitative comparisons are
made, where possible, between theory and experiment by performing numerical
simulations of the Boussinesq equations for a variety of experimentally
realistic situations. Rectangular and cylindrical geometries of varying aspect
ratios for experimental boundary conditions, including fins and spatial ramps
in plate separation, are examined with particular attention paid to the role of
the mean flow. A small cylindrical convection layer bounded laterally either by
a rigid wall, fin, or a ramp is investigated and our results suggest that the
mean flow plays an important role in the observed wavenumber. Analytical
results are developed quantifying the mean flow sources, generated by amplitude
gradients, and its effect on the pattern wavenumber for a large-aspect-ratio
cylinder with a ramped boundary. Numerical results are found to agree well with
these analytical predictions. We gain further insight into the role of mean
flow in pattern dynamics by employing a novel method of quenching the mean flow
numerically. Simulations of a spiral defect chaos state where the mean flow is
suddenly quenched is found to remove the time dependence, increase the
wavenumber and make the pattern more angular in nature.Comment: 9 pages, 10 figure
Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection
A theory of the novel spiral chaos state recently observed in Rayleigh-Benard
convection is proposed in terms of the importance of invasive defects i.e
defects that through their intrinsic dynamics expand to take over the system.
The motion of the spiral defects is shown to be dominated by wave vector
frustration, rather than a rotational motion driven by a vertical vorticity
field. This leads to a continuum of spiral frequencies, and a spiral may rotate
in either sense depending on the wave vector of its local environment. Results
of extensive numerical work on equations modelling the convection system
provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende
Lyapunov spectral analysis of a nonequilibrium Ising-like transition
By simulating a nonequilibrium coupled map lattice that undergoes an
Ising-like phase transition, we show that the Lyapunov spectrum and related
dynamical quantities such as the dimension correlation length~ are
insensitive to the onset of long-range ferromagnetic order. As a function of
lattice coupling constant~ and for certain lattice maps, the Lyapunov
dimension density and other dynamical order parameters go through a minimum.
The occurrence of this minimum as a function of~ depends on the number of
nearest neighbors of a lattice point but not on the lattice symmetry, on the
lattice dimensionality or on the position of the Ising-like transition. In
one-space dimension, the spatial correlation length associated with magnitude
fluctuations and the length~ are approximately equal, with both
varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to
Phys. Rev. E
Projeto e desenvolvimento de uma bancada Hardware-In-The-Loop para testar um sistema de geração de energia de ondas oceânicas
Um sistema Hardware-In-the-Loop para emular um conjunto turbina e gerador capaz de gerar energia pelo movimento das ondas é o objetivo deste trabalho. É apresentada uma visão geral sobre os diversos modelos de geradores existentes no mundo, além de realizar uma síntese do modelo matemático de um gerador de energia por ondas através de coluna d’água oscilante. Por meio de referências de curva de rendimento, o dispositivo HIL é construído para replicar um modelo real de sistema boia e turbina, desacoplando do modelo seu gerador original e incorporando uma máquina de imãs permanentes. Sistemas de hardware, instrumentos de medição e softwares são implementados com o objetivo de realizar controle de torque por meio da PTO entre turbina e gerador. São realizados ensaios a vazio e curto-circuito para obtenção de parâmetros do gerador, tais como indutância de eixo direto e quadratura.A Hardware-In-the-Loop system to emulate a turbine and generator set capable of generating energy through the movement of waves is the objective of this work. An overview of the different models of generators existing in the world is presented, as well as a synthesis of the mathematical model of a wave energy generator through the oscillating water column. Using yield curve references, the HIL device is built to replicate a real model of a float and turbine system, decoupling its original generator from the model and incorporating a permanent magnet machine. Hardware systems, measuring instruments and softwares are implemented with the objective of performing torque control through the Power Take Off (PTO) between turbine and generator. Open-circuit and short circuit tests are performed for generator parameter results, such as quadrature and direct axis inductance
- …
