137 research outputs found

    Cross-Newell equations for hexagons and triangles

    Get PDF
    The Cross-Newell equations for hexagons and triangles are derived for general real gradient systems, and are found to be in flux-divergence form. Specific examples of complex governing equations that give rise to hexagons and triangles and which have Lyapunov functionals are also considered, and explicit forms of the Cross-Newell equations are found in these cases. The general nongradient case is also discussed; in contrast with the gradient case, the equations are not flux-divergent. In all cases, the phase stability boundaries and modes of instability for general distorted hexagons and triangles can be recovered from the Cross-Newell equations.Comment: 24 pages, 1 figur

    The Spatio-Temporal Structure of Spiral-Defect Chaos

    Full text link
    We present a study of the recently discovered spatially-extended chaotic state known as spiral-defect chaos, which occurs in low-Prandtl-number, large-aspect-ratio Rayleigh-Benard convection. We employ the modulus squared of the space-time Fourier transform of time series of two-dimensional shadowgraph images to construct the structure factor S(k,ω){S}({\vec k},\omega ). This analysis is used to characterize the average spatial and temporal scales of the chaotic state. We find that the correlation length and time can be described by power-law dependences on the reduced Rayleigh number ϵ{\epsilon}. These power laws have as yet no theoretical explanation.Comment: RevTex 38 pages with 13 figures. Due to their large size, some figures are stored as separate gif images. The paper with included hi-res eps figures (981kb compressed, 3.5Mb uncompressed) is available at ftp://mobydick.physics.utoronto.ca/pub/MBCA96.tar.gz An mpeg movie and samples of data are also available at ftp://mobydick.physics.utoronto.ca/pub/. Paper submitted to Physica

    Do quasi-regular structures really exist in the solar photosphere? I. Observational evidence

    Full text link
    Two series of solar-granulation images -- the La Palma series of 5 June 1993 and the SOHO MDI series of 17--18 January 1997 -- are analysed both qualitatively and quantitatively. New evidence is presented for the existence of long-lived, quasi-regular structures (first reported by Getling and Brandt (2002)), which no longer appear unusual in images averaged over 1--2-h time intervals. Such structures appear as families of light and dark concentric rings or families of light and dark parallel strips (``ridges'' and ``trenches'' in the brightness distributions). In some cases, rings are combined with radial ``spokes'' and can thus form ``web'' patterns. The characteristic width of a ridge or trench is somewhat larger than the typical size of granules. Running-average movies constructed from the series of images are used to seek such structures. An algorithm is developed to obtain, for automatically selected centres, the radial distributions of the azimuthally averaged intensity, which highlight the concentric-ring patterns. We also present a time-averaged granulation image processed with a software package intended for the detection of geological structures in aerospace images. A technique of running-average-based correlations between the brightness variations at various points of the granular field is developed and indications are found for a dynamical link between the emergence and sinking of hot and cool parcels of the solar plasma. In particular, such a correlation analysis confirms our suggestion that granules -- overheated blobs -- may repeatedly emerge on the solar surface. Based on our study, the critical remarks by Rast (2002) on the original paper by Getling and Brandt (2002) can be dismissed.Comment: 21 page, 8 figures; accepted by "Solar Physics

    Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection

    Full text link
    Possibility of asymmetric square convection is investigated numerically using a few mode Lorenz-like model for thermal convection in Boussinesq fluids confined between two stress free and conducting flat boundaries. For relatively large value of Rayleigh number, the stationary rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability. Asymmetric squares, two dimensional rolls and again asymmetric squares with their corners shifted by half a wavelength form a stable limit cycle.Comment: 8 pages, 7 figure

    A model for interacting instabilities and texture dynamics of patterns

    Full text link
    A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is presented. The model consisting of twelve-mode dynamical system derived for periodic square lattice describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary zig-zag stripes and standing patchwork quilt pattern leads to spatiotemporal patterns of twisted patchwork quilt. Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of four different structures meet.Comment: 4 pages including 4 figures, page width revise

    Mean flow and spiral defect chaos in Rayleigh-Benard convection

    Get PDF
    We describe a numerical procedure to construct a modified velocity field that does not have any mean flow. Using this procedure, we present two results. Firstly, we show that, in the absence of mean flow, spiral defect chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns are characterized by mean wavenumbers that approach those uniquely selected by focus-type singularities, which, in the absence of mean flow, lie at the zig-zag instability boundary. The quenched patterns also have larger correlation lengths and are comprised of rolls with less curvature. Secondly, we describe how mean flow can contribute to the commonly observed phenomenon of rolls terminating perpendicularly into lateral walls. We show that, in the absence of mean flow, rolls begin to terminate into lateral walls at an oblique angle. This obliqueness increases with Rayleigh number.Comment: 14 pages, 19 figure

    Pattern Formation and Dynamics in Rayleigh-B\'{e}nard Convection: Numerical Simulations of Experimentally Realistic Geometries

    Full text link
    Rayleigh-B\'{e}nard convection is studied and quantitative comparisons are made, where possible, between theory and experiment by performing numerical simulations of the Boussinesq equations for a variety of experimentally realistic situations. Rectangular and cylindrical geometries of varying aspect ratios for experimental boundary conditions, including fins and spatial ramps in plate separation, are examined with particular attention paid to the role of the mean flow. A small cylindrical convection layer bounded laterally either by a rigid wall, fin, or a ramp is investigated and our results suggest that the mean flow plays an important role in the observed wavenumber. Analytical results are developed quantifying the mean flow sources, generated by amplitude gradients, and its effect on the pattern wavenumber for a large-aspect-ratio cylinder with a ramped boundary. Numerical results are found to agree well with these analytical predictions. We gain further insight into the role of mean flow in pattern dynamics by employing a novel method of quenching the mean flow numerically. Simulations of a spiral defect chaos state where the mean flow is suddenly quenched is found to remove the time dependence, increase the wavenumber and make the pattern more angular in nature.Comment: 9 pages, 10 figure

    Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection

    Full text link
    A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed in terms of the importance of invasive defects i.e defects that through their intrinsic dynamics expand to take over the system. The motion of the spiral defects is shown to be dominated by wave vector frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its local environment. Results of extensive numerical work on equations modelling the convection system provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende

    Lyapunov spectral analysis of a nonequilibrium Ising-like transition

    Full text link
    By simulating a nonequilibrium coupled map lattice that undergoes an Ising-like phase transition, we show that the Lyapunov spectrum and related dynamical quantities such as the dimension correlation length~ξδ\xi_\delta are insensitive to the onset of long-range ferromagnetic order. As a function of lattice coupling constant~gg and for certain lattice maps, the Lyapunov dimension density and other dynamical order parameters go through a minimum. The occurrence of this minimum as a function of~gg depends on the number of nearest neighbors of a lattice point but not on the lattice symmetry, on the lattice dimensionality or on the position of the Ising-like transition. In one-space dimension, the spatial correlation length associated with magnitude fluctuations and the length~ξδ\xi_\delta are approximately equal, with both varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to Phys. Rev. E

    Projeto e desenvolvimento de uma bancada Hardware-In-The-Loop para testar um sistema de geração de energia de ondas oceânicas

    Get PDF
    Um sistema Hardware-In-the-Loop para emular um conjunto turbina e gerador capaz de gerar energia pelo movimento das ondas é o objetivo deste trabalho. É apresentada uma visão geral sobre os diversos modelos de geradores existentes no mundo, além de realizar uma síntese do modelo matemático de um gerador de energia por ondas através de coluna d’água oscilante. Por meio de referências de curva de rendimento, o dispositivo HIL é construído para replicar um modelo real de sistema boia e turbina, desacoplando do modelo seu gerador original e incorporando uma máquina de imãs permanentes. Sistemas de hardware, instrumentos de medição e softwares são implementados com o objetivo de realizar controle de torque por meio da PTO entre turbina e gerador. São realizados ensaios a vazio e curto-circuito para obtenção de parâmetros do gerador, tais como indutância de eixo direto e quadratura.A Hardware-In-the-Loop system to emulate a turbine and generator set capable of generating energy through the movement of waves is the objective of this work. An overview of the different models of generators existing in the world is presented, as well as a synthesis of the mathematical model of a wave energy generator through the oscillating water column. Using yield curve references, the HIL device is built to replicate a real model of a float and turbine system, decoupling its original generator from the model and incorporating a permanent magnet machine. Hardware systems, measuring instruments and softwares are implemented with the objective of performing torque control through the Power Take Off (PTO) between turbine and generator. Open-circuit and short circuit tests are performed for generator parameter results, such as quadrature and direct axis inductance
    corecore