328 research outputs found

    A baseline survey of potentially toxic elements in the soil of north-west Syria following a decade of conflict

    Get PDF
    We present the first region-wide chemical survey of soils in NW Syria following more than a decade of ongoing conflict. We sampled topsoil at 66 sites, typically located in marginal agricultural (orchards, arable) or peri-urban settings, grouped around 21 localities covering the whole area of NW Syria currently under Syrian Opposition control. Samples were analysed in the UK using ICP-MS and ICP-OES. Topsoil total concentrations of heavy metals are broadly consistent with pre-war data from Aleppo and recent data from nearby Turkey. Principal Components Analysis (PCA) of associations among the sampling sites identified three groupings. Ni (133.30 ± 72.12 mg/kg) and Cr (122.14 ± 52.25 mg/kg) exist in all samples at levels in excess of typical European guideline thresholds for agricultural soil. Observed Cd (0.57 ± 0.93 mg/kg), Co (23.07 ± 18.48 mg/kg) and As (6.65 ± 4.51 mg/kg) concentrations are up to three times comparable values from nearby agricultural regions in southern Turkey. Maximum observed values for Cd, As, and Co, which exceed EU thresholds, are concentrated in a corridor around Sarmada to the west of Aleppo which has seen some of the most intense conflict-related impacts. Cu (28.33 ± 17.11 mg/kg), Pb (15.65 ± 10.85 mg/kg) and Zn (73.64 ± 40.15 mg/kg) also observe maxima in the Sarmada corridor, but show a more even distribution across the region, widely at values above comparable regional values for agriculture but below EU threshold concentrations. We interpret the occurrence of Ni-Cr as consistent with intensive agriculture using wastewater-contaminated irrigation and fertilisers. Cd-As-Co and Cu-Pb-Zn are likely anthropogenic and reflect intense pressures of conflict, informal settlement, unregulated industry and untreated wastewater irrigation on a historically agricultural region. The sampling method was designed to capture regional variations from a minimal dataset and it is likely that local topsoil concentrations at specific points of impact (proximal to locations of shelling, industry, effluent release or population) will be considerably higher than those reported here. This study establishes an important baseline reference for further targeted studies to identify and mitigate specific pollution hazards in this region of ongoing, extreme humanitarian and ecological threat

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Reward-Related Dorsal Striatal Activity Differences between Former and Current Cocaine Dependent Individuals during an Interactive Competitive Game

    Get PDF
    Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; n = 30) and former (FCD; n = 28) cocaine dependent subjects as well as healthy control (HC; n = 31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses)

    Common Peptides Study of Aminoacyl-tRNA Synthetases

    Get PDF
    Aminoacyl tRNA synthetases (aaRSs) constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains.We utilized the Common Peptides (CPs) framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS–class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA) enzyme overlapping binding sites in both families.The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families

    Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of degraded leaf molecules during monocarpic senescence. The down-regulation of the NAC transcription factor <it>Grain Protein Content </it>(<it>GPC</it>) in transgenic wheat plants delays senescence (>3 weeks) and reduces the concentration of protein, Zn and Fe in the grain (>30%), linking senescence and nutrient remobilization.</p> <p>Based on the early and rapid up-regulation of <it>GPC </it>in wheat flag leaves after anthesis, we hypothesized that this transcription factor is an early regulator of monocarpic senescence. To test this hypothesis, we used high-throughput mRNA-seq technologies to characterize the effect of the <it>GPC </it>down-regulation on the wheat flag-leaf transcriptome 12 days after anthesis. At this early stage of senescence <it>GPC </it>transcript levels are significantly lower in transgenic GPC-RNAi plants than in the wild type, but there are still no visible phenotypic differences between genotypes.</p> <p>Results</p> <p>We generated 1.4 million 454 reads from early senescing flag leaves (average ~350 nt) and assembled 1.2 million into 30,497 contigs that were used as a reference to map 145 million Illumina reads from three wild type and four GPC-RNAi plants. Following normalization and statistical testing, we identified a set of 691 genes differentially regulated by <it>GPC </it>(431 ≥ 2-fold change). Transcript level ratios between transgenic and wild type plants showed a high correlation (<it>R </it>= 0.83) between qRT-PCR and Illumina results, providing independent validation of the mRNA-seq approach. A set of differentially expressed genes were analyzed across an early senescence time-course.</p> <p>Conclusions</p> <p>Monocarpic senescence is an active process characterized by large-scale changes in gene expression which begins considerably before the appearance of visual symptoms of senescence. The mRNA-seq approach used here was able to detect small differences in transcript levels during the early stages of senescence. This resulted in an extensive list of <it>GPC</it>-regulated genes, which includes transporters, hormone regulated genes, and transcription factors. These <it>GPC</it>-regulated genes, particularly those up-regulated during senescence, provide valuable entry points to dissect the early stages of monocarpic senescence and nutrient remobilization in wheat.</p

    Mechanism of the Interaction between the Intrinsically Disordered C-Terminus of the Pro-Apoptotic ARTS Protein and the Bir3 Domain of XIAP

    Get PDF
    ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248–274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266–274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266–274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266–274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS – Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis

    Peptides Derived from HIV-1 Integrase that Bind Rev Stimulate Viral Genome Integration

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3′-end processing in which IN removes a pGT dinucleotide from the 3′ end of each viral long terminal repeat (LTR). Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR.The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events

    Crowding Alone Cannot Account for Cosolute Effect on Amyloid Aggregation

    Get PDF
    Amyloid fiber formation is a specific form of protein aggregation, often resulting from the misfolding of native proteins. Aimed at modeling the crowded environment of the cell, recent experiments showed a reduction in fibrillation halftimes for amyloid-forming peptides in the presence of cosolutes that are preferentially excluded from proteins and peptides. The effect of excluded cosolutes has previously been attributed to the large volume excluded by such inert cellular solutes, sometimes termed “macromolecular crowding”. Here, we studied a model peptide that can fold to a stable monomeric β-hairpin conformation, but under certain solution conditions aggregates in the form of amyloid fibrils. Using Circular Dichroism spectroscopy (CD), we found that, in the presence of polyols and polyethylene glycols acting as excluded cosolutes, the monomeric β-hairpin conformation was stabilized with respect to the unfolded state. Stabilization free energy was linear with cosolute concentration, and grew with molecular volume, as would also be predicted by crowding models. After initiating the aggregation process with a pH jump, fibrillation in the presence and absence of cosolutes was followed by ThT fluorescence, transmission electron microscopy, and CD spectroscopy. Polyols (glycerol and sorbitol) increased the lag time for fibril formation and elevated the amount of aggregated peptide at equilibrium, in a cosolute size and concentration dependent manner. However, fibrillation rates remained almost unaffected by a wide range of molecular weights of soluble polyethylene glycols. Our results highlight the importance of other forces beyond the excluded volume interactions responsible for crowding that may contribute to the cosolute effects acting on amyloid formation

    Consanguinity and reproductive health among Arabs

    Get PDF
    Consanguineous marriages have been practiced since the early existence of modern humans. Until now consanguinity is widely practiced in several global communities with variable rates depending on religion, culture, and geography. Arab populations have a long tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, and specifically first cousin marriages which may reach 25-30% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could have an effect on some reproductive health parameters such as postnatal mortality and rates of congenital malformations. The association of consanguinity with other reproductive health parameters, such as fertility and fetal wastage, is controversial. The main impact of consanguinity, however, is an increase in the rate of homozygotes for autosomal recessive genetic disorders. Worldwide, known dominant disorders are more numerous than known recessive disorders. However, data on genetic disorders in Arab populations as extracted from the Catalogue of Transmission Genetics in Arabs (CTGA) database indicate a relative abundance of recessive disorders in the region that is clearly associated with the practice of consanguinity
    corecore