1,135 research outputs found

    Experimental Overlay of Glazon over Two Bridge Decks

    Get PDF
    In accordance with a Personal Service Agreement entered into with the Glazon Industries, Inc., on July 2, 1971, the two subject decks were patched and overlayed with Glazon. On July 27, 1971, work started on RP 106-286-HG3, KY 395 bridge over I 64 in Shelby County. Work consisted of routing old concrete and sandblasting the surface (Figures 1 and 2). State personnel and equipment were used for all cleaning operations. The same procedures were followed to clean HM 99-1324A-MB3 in Powell County near Clay City. On July 28, 1971, Glazon personnel and equipment arrived at the work site in Shelby County. Glazon representatives judged the cleaning adequate and proceeded with patching the southbound lane (Figure 3). No accurate information is available as to the exact formulation of the Glazon used or proportions in the mix. Glazon Industries declined disclosure of such information since their material was not patented. Before patching, the holes were thoroughly dried. Shrinkage and cracking were noticed in the patches shortly after drying (Figure 4). Later, on other lanes, patch holes were primed with a Glazon liquid before patching (Figures 5 and 6). After a short drying period, the deck was sprayed with a Glazon mix similar to that for patching but more fluid (Figures 7 and 8). Some problems were encountered due to weak air supply, but were shortly overcome. The sprayed deck looked satisfactory to Glazon personnel who did most of the work in patching and overlaying the deck. The operation was moved to the Clay City bridge and the same procedures were followed in working the northbound lane. Two wingwalls on the Shelby County bridge were sprayed with a Glazon mix made with white cement. On August 3, 1971, both bridges were completed though work was interrupted by rain several times. On August 5, 1971, both bridges were reopened to two-lane traffic. This Division closely observed these operations from the beginning. It was later learned from the Division of Maintenance that the northbound lane of the Shelby County deck, which was badly deteriorating, had been repaired on September 15, 1971

    Dirac parameters and topological phase diagram of Pb1-xSnxSe from magneto-spectroscopy

    Full text link
    Pb1-xSnxSe hosts 3D massive Dirac fermions across the entire composition range for which the crystal structure is cubic. In this work, we present a comprehensive experimental mapping of the 3D band structure parameters of Pb1-xSnxSe as a function of composition and temperature. We cover a parameter space spanning the band inversion that yields its topological crystalline insulator phase. A non-closure of the energy gap is evidenced in the vicinity of this phase transition. Using magnetooptical Landau level spectroscopy, we determine the energy gap, Dirac velocity, anisotropy factor and topological character of Pb1-xSnxSe epilayers grown by molecular beam epitaxy on BaF2 (111). Our results are evidence that Pb1-xSnxSe is a model system to study topological phases and the nature of the phase transition.Comment: Submitte

    Massive and massless Dirac fermions in Pb1-xSnxTe topological crystalline insulator probed by magneto-optical absorption

    Get PDF
    Dirac fermions in condensed matter physics hold great promise for novel fundamental physics, quantum devices and data storage applications. IV-VI semiconductors, in the inverted regime, have been recently shown to exhibit massless topological surface Dirac fermions protected by crystalline symmetry, as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both surface and bulk states are quantized into Landau levels that disperse as B^1/2, and are thus difficult to distinguish. In this work, magneto-optical absorption is used to probe the Landau levels of high mobility Bi-doped Pb0.54Sn0.46Te topological crystalline insulator (111)-oriented films. The high mobility achieved in these thin film structures allows us to probe and distinguish the Landau levels of both surface and bulk Dirac fermions and extract valuable quantitative information about their physical properties. This work paves the way for future magnetooptical and electronic transport experiments aimed at manipulating the band topology of such materials.Comment: supplementary material included, to appear in Scientific Report

    Antiferromagnetic phase of the gapless semiconductor V3Al

    Full text link
    Discovering new antiferromagnetic compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully synthesized via arc-melting and annealing. The antiferromagnetic properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely-oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-third of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1

    Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

    Full text link
    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic interference effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.Comment: 4 pages, 2 figure

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)∈(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1∞\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which inf⁥n≄1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as n→∞n\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any Ï”>0\epsilon>0, there exists K=K(Ï”,d)≄d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any k≄Kk\ge K, for any point q∈Rdq \in \mathbb{R}^d and for any finite Borel measure ÎŒ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1âˆȘ
âˆȘAk\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an Ï”\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,
,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq

    First Passage Distributions in a Collective Model of Anomalous Diffusion with Tunable Exponent

    Full text link
    We consider a model system in which anomalous diffusion is generated by superposition of underlying linear modes with a broad range of relaxation times. In the language of Gaussian polymers, our model corresponds to Rouse (Fourier) modes whose friction coefficients scale as wavenumber to the power 2−z2-z. A single (tagged) monomer then executes subdiffusion over a broad range of time scales, and its mean square displacement increases as tαt^\alpha with α=1/z\alpha=1/z. To demonstrate non-trivial aspects of the model, we numerically study the absorption of the tagged particle in one dimension near an absorbing boundary or in the interval between two such boundaries. We obtain absorption probability densities as a function of time, as well as the position-dependent distribution for unabsorbed particles, at several values of α\alpha. Each of these properties has features characterized by exponents that depend on α\alpha. Characteristic distributions found for different values of α\alpha have similar qualitative features, but are not simply related quantitatively. Comparison of the motion of translocation coordinate of a polymer moving through a pore in a membrane with the diffusing tagged monomer with identical α\alpha also reveals quantitative differences.Comment: LaTeX, 10 pages, 8 eps figure

    Miniband engineering and topological phase transitions in topological - normal insulator superlattices

    Full text link
    Periodic stacking of topologically trivial and non-trivial layers with opposite symmetry of the valence and conduction bands induces topological interface states that, in the strong coupling limit, hybridize both across the topological and normal insulator layers. Using band structure engineering, such superlattices can be effectively realized using the IV-VI lead tin chalcogenides. This leads to emergent minibands with a tunable topology as demonstrated both by theory and experiments. The topological minibands are proven by magneto-optical spectroscopy, revealing Landau level transitions both at the center and edges of the artificial superlattice mini Brillouin zone. Their topological character is identified by the topological phase transitions within the minibands observed as a function of temperature. The critical temperature of this transition as well as the miniband gap and miniband width can be precisely controlled by the layer thicknesses and compositions. This witnesses the generation of a new fully tunable quasi-3D topological state that provides a template for realization of magnetic Weyl semimetals and other strongly interacting topological phases.Comment: 21 pages, 8 figure

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur
    • 

    corecore