37 research outputs found

    The newcastle 85+ study

    Get PDF
    Funding Information: Funding: The Newcastle 85+ study was jointly funded by the Medical Research Council and Biotechnology and Biomedical Science Research Council (G0500997), now part of UK Research and Innovation (UKRI) in addition to the Newcastle Healthcare Charity. The following waves were funded by the Dunhill Medical Trust (R124/0509), Newcastle University, UK Medical Research Council and the British Heart Foundation. Overall, the project was supported by National Institute for Health Research Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. This particular analysis (vitamin D and telomere length) received no additional external funding. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.(1) Introduction: vitamin D may maintain the telomere length, either directly or via the inflammation effect and/or modulating the rate of cell proliferation. Whilst results from crosssectional studies investigating the association between 25(OH)D concentration and telomere length have been mixed, there is a dearth of data from prospective studies which have assessed these associations. This study aimed to examine the association between 25(OH)D concentration in plasma and telomere length in blood cells in very-old adults (≥85 years old) at baseline, 18 months and 36 months by controlling for related lifestyle factors. (2) Methodology: our prospective cohort study comprised 775 participants from the Newcastle 85+ Study who had 25(OH)D measurements at baseline. Plasma 25(OH)D was stratified as 50 nmol/L (high). Peripheral blood mononuclear cell telomere length was measured by quantitative real-time polymerase chain reaction at baseline, 18 and 36 months from baseline. (3) Results: a positive significant association was found between 25(OH)D concentration and telomere length amongst very-old participants at baseline (95% CI = 12.0–110.3, B = 61.2 ± 5.0, p = 0.015). This association was negative at 18 months (95% CI = −59.9–−7.5, B = −33.7 ± 13.3, p = 0.012) but was non-significant at 36 months. (4) Conclusion: Circulating 25(OH)D concentration shows inconsistent relationships with telomere length over time in very-old (85+ year old) adults.publishersversionpublishe

    The newcastle 85+ study

    Get PDF
    Background: Low vitamin D status is common in very old adults which may have adverse consequences for muscle function, a major predictor of disability. Aims: To explore the association between 25-hydroxyvitamin D [25(OH)D] concentrations and disability trajectories in very old adults and to determine whether there is an ‘adequate’ 25(OH)D concentration which might protect against a faster disability trajectory. Methodology: A total of 775 participants from the Newcastle 85+ Study for who 25(OH)D concentration at baseline was available. Serum 25(OH)D concentrations of 50 nmol/L were used as cut-offs to define low, moderate and high vitamin D status, respectively. Disability was defined as difficulty in performing 17 activities of daily living, at baseline, after 18, 36 and 60 months. Results: A three-trajectory model was derived (low-to-mild, mild-to-moderate and moderate-to-severe). In partially adjusted models, participants with 25(OH)D concentrations <25 nmol/L were more likely to have moderate and severe disability trajectories, even after adjusting for sex, living in an institution, season, cognitive status, BMI and vitamin D supplement use. However, this association disappeared after further adjustment for physical activity. Conclusions: Vitamin D status does not appear to influence the trajectories of disability in very old adults.publishersversionpublishe

    No effect of monthly supplementation with 12000 IU, 24000 IU or 48000 IU vitamin D3 for one year on muscle function: The vitamin D in older people study

    Get PDF
    Vitamin D plays a role in muscle function through genomic and non-genomic processes. The objective of this RCT was to determine the effect of monthly supplemental vitamin D3 onmuscle function in 70+ years old adults. Participants (n = 379) were randomized to receive, 12000 IU, 24000 IU or 48000 IU of vitamin D3 monthly for 12 months. Standardized Hand Grip Strength (GS) and Timed-Up and Go (TUG) were measured before and after vitamin D3 supplementation. Fasting total plasma 25 hydroxyvitamin D (25OHD) and Parathyroid Hormone (PTH) concentrations were measured by Liquid Chromatography Tandem Mass Spectrometry (LC-MSMS) and immunoassay, respectively. Baseline plasma 25OHD concentrations were 41.3 (SD 19.9), 39.5 (SD 20.6), 38.9 (SD 19.7) nmol/L; GS values were 28.5 (SD 13.4), 28.8 (SD 13.0) and 28.1 (SD 12.1) kg and TUG test values were 10.8 (SD 2.5), 11.6 (SD 2.9) and 11.9 (SD 3.6) s for the 12000 IU, 24000 IU and 48000 IU dose groups, respectively. Baseline plasma 25OHD concentration < 25 nmol/L was associated with lower GS (P = 0.003). Post-interventional plasma 25OHD concentrations increased to 55.9 (SD 15.6), 64.6 (SD15.3) and 79.0 (SD 15.1) nmol/L in the 12000 IU, 24000 IU and 48000 IU dose groups, respectively and there was a significant dose-related response in post-interventional plasma 25OHD concentration (p<0.0001). Post-interventional GS values were 24.1 (SD 10.1), 26.2 (SD10.6) and 25.7 (SD 9.4) kg and TUG test values were 11.5 (SD 2.6), 12.0 (SD 3.7) and 11.9 (SD 3.2) s for 12000 IU, 24000 IU and 48000 IU dose groups, respectively. The change (Δ) in GS and TUG from pre to post-intervention was not different between treatment groups before and after the adjustment for confounders, suggesting no effect of the intervention. Plasma 25OHD concentration was not associated with GS and TUG test after supplementation. In conclusion, plasma 25OHD concentration < 25 nmol/L was associated with lower GS at baseline. However, monthly vitamin D3 supplementation with 12000 IU, 24000 IU and 48000 IU, for 12 months had no effect on muscle function in older adults aged 70+ years

    Recruitment strategies for sarcopenia trials – lessons from the LACE randomised controlled trial

    Get PDF
    Background: Sarcopenia is rarely diagnosed and is not recorded electronically in routine clinical care, posing challenges to trial recruitment. We describe the performance of four components of a strategy to efficiently recruit participants with sarcopenia to a trial of perindopril and/or leucine for sarcopenia: primary care vs. hospital recruitment, a comparison of central vs. local telephone pre-screening, performance of a questionnaire on physical function conducted as part of the pre-screening telephone call, and performance of bioimpedance measurement to identify low muscle mass. Methods: Hospital-based recruitment took place through inpatient and outpatient geriatric medicine services. Local research nurses reviewed medical notes and approached potentially eligible patients. Primary care recruitment reviewed primary care lists from collaborating practices, sending mailshots to patients aged 70 and over who were not taking angiotensin-converting enzyme inhibitors. Telephone pre-screening was conducted either by research nurses at each site or centrally by Tayside Clinical Trials Unit. The 10-point SARC-F questionnaire was used for pre-screening. De-identified recruitment information was held on a central electronic tracking system and analysed using SPSS. Bioimpedance was measured using the Akern BIA 101 system, with the Sergi equation used to estimate lean mass. Results: Fourteen UK sites recruited to the trial. The 1202 sets of notes in hospital-based care were reviewed at these sites; 7 participants (0.6% of total notes screened) were randomized. From primary care, 13 808 invitations were sent; 138 (1.0% of total invited) were randomized. 633/2987 primary care respondents were pre-screened centrally; the mean number of calls per respondent was 2.3. For 10 sites where central and local pre-screening could be compared, the conversion rate from pre-screening to randomization was 18/588 (3.1%) for centralized calls, compared with 73/1814 (4.0%) for local pre-screening calls (P = 0.29). A weak relationship was seen between higher (worse) SARC-F score at screening and lower likelihood of progression to randomization (r = −0.08, P = 0.03). Muscle mass estimates generated using the Sergi equation were systematically biased, and a recalibrated equation for bioimpedance-estimated muscle mass was derived. Conclusions: Primary care recruitment led to higher response rates and overall numbers randomized than hospital-based recruitment. Centralized pre-screening saved local research nurses' time but did not improve conversion to randomization. SARC-F did not help to target screening activity in this sarcopenia trial, and a recalibration of the equation for estimating muscle mass from bioimpedance measures may improve accuracy of the screening process

    Does domiciliary welfare rights advice improve health-related quality of life in independent-living, socio-economically disadvantaged people aged ≥60 years? Randomised controlled trial, economic and process evaluations in the North East of England.

    Get PDF
    BACKGROUND: There are major socio-economic gradients in health that could be influenced by increasing personal resources. Welfare rights advice can enhance resources but has not been rigorously evaluated for health-related impacts. METHODS: Randomised, wait-list controlled trial with individual allocation, stratified by general practice, of welfare rights advice and assistance with benefit entitlements, delivered in participants' homes by trained advisors. Control was usual care. Participants were volunteers sampled from among all those aged ≥60 years registered with general practices in socio-economically deprived areas of north east England. Outcomes at 24 months were: CASP-19 score (primary), a measure of health-related quality of life; changes in income, social and physical function, and cost-effectiveness (secondary). Intention to treat analysis compared outcomes using multiple regression, with adjustment for stratification and key covariates. Qualitative interviews with purposive samples from both trial arms were thematically analysed. FINDINGS: Of 3912 individuals approached, 755 consented and were randomised (381 Intervention, 374 Control). Results refer to outcomes at 24 months, with data available on 562 (74.4%) participants. Intervention was received as intended by 335 (88%), with 84 (22%) awarded additional benefit entitlements; 46 did not receive any welfare rights advice, and none of these were awarded additional benefits. Mean CASP-19 scores were 42.9 (Intervention) and 42.4 (Control) (adjusted mean difference 0.3 [95%CI -0.8, 1.5]). There were no significant differences in secondary outcomes except Intervention participants reported receiving more care at home at 24m (53.7 (Intervention) vs 42.0 (Control) hours/week (adjusted mean difference 26.3 [95%CIs 0.8, 56.1]). Exploratory analyses did not support an intervention effect and economic evaluation suggested the intervention was unlikely to be cost-effective. Qualitative data from 50 interviews suggested there were improvements in quality of life among those receiving additional benefits. CONCLUSIONS: We found no effects on health outcomes; fewer participants than anticipated received additional benefit entitlements, and participants were more affluent than expected. Our findings do not support delivery of domiciliary welfare rights advice to achieve the health outcomes assessed in this population. However, better intervention targeting may reveal worthwhile health impacts.All authors received a grant of £798,884 from the UK National Institute of Health Research, Public Health Research Programme (No. 09/3009/ 02). www.nihr.ac.uk. All authors received a grant of £28,000 from the North East Strategic Health Authority in 2012 to cover the costs of delivering the intervention, associated training and other nonresearch costs of this study. North East SHA no longer exists. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Randomized controlled trial of Vitamin D supplementation in older people to optimize bone health

    Get PDF
    Background: Vitamin D insufficiency is common in older people and may lead to increased bone resorption, bone loss, and increased falls and fractures. However, clinical trials assessing the effect of vitamin D supplementation on bone mineral density (BMD) have yielded conflicting results. Objectives This study examined the effect of vitamin D supplementation on BMD at the hip, using dual-energy X-ray absorptiometry. Methods: A total of 379 adults aged ≥70 y (48% women; mean age: 75 y) from the northeast of England were randomly allocated to 1 of 3 doses of vitamin D 3 [12,000 international units (IU), 24,000 IU, or 48,000 IU] given once a month. The primary outcome was change in BMD (δBMD) at the hip. Secondary endpoints comprised the dose effects on femoral neck BMD, falls, circulating calciotropic hormones, bone turnover markers, and adverse events. Results: The mean ± SD baseline plasma 25-hydroxyvitamin D [25(OH)D] concentration was 40.0 ± 20.1 nmol/L, which increased after 12 mo to a mean 25(OH)D of 55.9, 64.6, or 79.0 nmol/L for participants receiving a monthly dose of 12,000, 24,000, or 48,000 IU, respectively (P < 0.01 for difference). There was no between-group difference in δBMD. However, parathyroid hormone concentrations decreased in all 3 groups, with a significantly greater decrease in the 48,000-IU group compared with the 12,000-IU group (P < 0.01). There were no differences in any adverse events between groups, with 3 cases of hypercalcemia, none of nephrolithiasis, and 249 falls observed. Conclusions: There was no difference in change in BMD over 12 mo between the 3 doses of vitamin D, suggesting no effect of the intervention or a similar attenuation of the anticipated decrease in BMD over 12 mo. The treatment was safe and effective in increasing plasma 25(OH)D concentrations, with no dose-related adverse events. This trial was registered at the EU Clinical Trials Register (EudraCT 2011-004890-10) and the ISRCTN Registry (ISRCTN35648481)

    Randomized controlled trial of Vitamin D supplementation in older people to optimize bone health

    Get PDF
    Background: Vitamin D insufficiency is common in older people and may lead to increased bone resorption, bone loss, and increased falls and fractures. However, clinical trials assessing the effect of vitamin D supplementation on bone mineral density (BMD) have yielded conflicting results. Objectives This study examined the effect of vitamin D supplementation on BMD at the hip, using dual-energy X-ray absorptiometry. Methods: A total of 379 adults aged ≥70 y (48% women; mean age: 75 y) from the northeast of England were randomly allocated to 1 of 3 doses of vitamin D 3 [12,000 international units (IU), 24,000 IU, or 48,000 IU] given once a month. The primary outcome was change in BMD (δBMD) at the hip. Secondary endpoints comprised the dose effects on femoral neck BMD, falls, circulating calciotropic hormones, bone turnover markers, and adverse events. Results: The mean ± SD baseline plasma 25-hydroxyvitamin D [25(OH)D] concentration was 40.0 ± 20.1 nmol/L, which increased after 12 mo to a mean 25(OH)D of 55.9, 64.6, or 79.0 nmol/L for participants receiving a monthly dose of 12,000, 24,000, or 48,000 IU, respectively (P < 0.01 for difference). There was no between-group difference in δBMD. However, parathyroid hormone concentrations decreased in all 3 groups, with a significantly greater decrease in the 48,000-IU group compared with the 12,000-IU group (P < 0.01). There were no differences in any adverse events between groups, with 3 cases of hypercalcemia, none of nephrolithiasis, and 249 falls observed. Conclusions: There was no difference in change in BMD over 12 mo between the 3 doses of vitamin D, suggesting no effect of the intervention or a similar attenuation of the anticipated decrease in BMD over 12 mo. The treatment was safe and effective in increasing plasma 25(OH)D concentrations, with no dose-related adverse events. This trial was registered at the EU Clinical Trials Register (EudraCT 2011-004890-10) and the ISRCTN Registry (ISRCTN35648481)

    Development of a UK core dataset for geriatric medicine research: : a position statement and results from a Delphi consensus process

    Get PDF
    Funding AS and MW are funded by the Newcastle National Institute for Health (NIHR) Biomedical Research Centre, which also funded the initial meeting of academic clinicians in geriatric medicine during the Delphi process. The views expressed in this article are those of the authors and not necessarily those of the NIHR, the NHS, or the Department of Health. Acknowledgements The authors acknowledge the contributions of members of the UK Geriatric Medicine Core Dataset Extended Working Group.Peer reviewedPublisher PD

    Activin type I receptor polymorphisms and body composition in older individuals with sarcopenia-Analyses from the LACE randomised controlled trial

    Get PDF
    BACKGROUND: Ageing is associated with changes in body composition including an overall reduction in muscle mass and a proportionate increase in fat mass. Sarcopenia is characterised by losses in both muscle mass and strength. Body composition and muscle strength are at least in part genetically determined, consequently polymorphisms in pathways important in muscle biology (e.g., the activin/myostatin signalling pathway) are hypothesised to contribute to the development of sarcopenia.METHODS: We compared regional body composition measured by DXA with genotypes for two polymorphisms (rs10783486, minor allele frequency (MAF) = 0.26 and rs2854464, MAF = 0.26) in the activin 1B receptor (ACVR1B) determined by PCR in a cross-sectional analysis of DNA from 110 older individuals with sarcopenia from the LACE trial.RESULTS: Neither muscle mass nor strength showed any significant associations with either genotype in this cohort. Initial analysis of rs10783486 showed that males with the AA/AG genotype were taller than GG males (174±7cm vs 170±5cm, p = 0.023) and had higher arm fat mass, (median higher by 15%, p = 0.008), and leg fat mass (median higher by 14%, p = 0.042). After correcting for height, arm fat mass remained significantly higher (median higher by 4% padj = 0.024). No associations (adjusted or unadjusted) were seen in females. Similar analysis of the rs2854464 allele showed a similar pattern with the presence of the minor allele (GG/AG) being associated with greater height (GG/AG = 174±7 cm vs AA = 170 ±5cm, p = 0.017) and greater arm fat mass (median higher by 16%, p = 0.023). Again, the difference in arm fat remained after correction for height. No similar associations were seen in females analysed alone.CONCLUSION: These data suggest that polymorphic variation in the ACVR1B locus could be associated with body composition in older males. The activin/myostatin pathway might offer a novel potential target to prevent fat accumulation in older individuals.</p

    ACE I/D genotype associates with strength in sarcopenic men but not with response to ACE inhibitor therapy in older adults with sarcopenia:Results from the LACE trial

    Get PDF
    BACKGROUND: Angiotensin II (AII), has been suggested to promote muscle loss. Reducing AII synthesis, by inhibiting angiotensin converting enzyme (ACE) activity has been proposed as a method to inhibit muscle loss. The LACE clinical trial was designed to determine whether ACE inhibition would reduce further muscle loss in individuals with sarcopenia but suffered from low recruitment and returned a negative result. Polymorphic variation in the ACE promoter (I/D alleles) has been associated with differences in ACE activity and muscle physiology in a range of clinical conditions. This aim of this analysis was to determine whether I/D polymorphic variation is associated with muscle mass, strength, in sarcopenia or contributed to the lack of response to treatment in the LACE study.METHODS: Sarcopenic individuals were recruited into a 2x2 factorial multicentre double-blind study of the effects of perindopril and/or leucine versus placebo on physical performance and muscle mass. DNA extracted from blood samples (n = 130 72 women and 58 men) was genotyped by PCR for the ACE I/D polymorphism. Genotypes were then compared with body composition measured by DXA, hand grip and quadriceps strength before and after 12 months' treatment with leucine and/or perindopril in a cross-sectional analysis of the influence of genotype on these variables.RESULTS: Allele frequencies for the normal UK population were extracted from 13 previous studies (I = 0.473, D = 0.527). In the LACE cohort the D allele was over-represented (I = 0.412, D = 0.588, p = 0.046). This over-representation was present in men (I = 0.353, D = 0.647, p = 0.010) but not women (I = 0.458, D = 0.532, p = 0.708). In men but not women, individuals with the I allele had greater leg strength (II/ID = 18.00 kg (14.50, 21.60) vs DD = 13.20 kg (10.50, 15.90), p = 0.028). Over the 12 months individuals with the DD genotype increased in quadriceps strength but those with the II or ID genotype did not. Perindopril did not increase muscle strength or mass in any polymorphism group relative to placebo.CONCLUSION: Our results suggest that although ACE genotype was not associated with response to ACE inhibitor therapy in the LACE trial population, sarcopenic men with the ACE DD genotype may be weaker than those with the ACE I/D or II genotype.</p
    corecore