116 research outputs found

    V1647 ORIONIS: Keck/Nirspec 2 MICRON Echelle Observations

    Full text link
    We present new Keck II NIRSPEC high-spectral resolution 2 um echelle observations of the young eruptive variable star V1647 Orionis. This star went into outburst in late 2003 and faded to its pre-outburst brightness after approximately 26 months. V1647 Orionis is the illuminating star of McNeil's Nebula and is located near M 78 in the Lynds 1630 dark cloud. Our spectra have a resolving power of approximately 18,000 and allow us to study in detail the weak absorption features present on the strong near-IR veiled continuum. An analysis of the echelle orders containing Mg I (2.1066 um) and Al I (2.1099 um), Br-gamma (2.1661 um), the Na I doublet (2.206 and 2.209 um), and the CO overtone bandhead (2.2935 um) gives us considerable information on the physical and geometric characteristics of the regions producing these spectral features. We find that, at high-spectral resolution, V1647 Orionis in quiescence resembles a significant number of FU Orionis type eruptive variables and does not appear similar to the quiescent EX Lupi variables observed. This correspondence is discussed and implications for the evolutionary state of the star are considered.Comment: 37 pages, 3 Tables, 17 Figure

    High Resolution Near-Infrared Spectroscopy of FUors and FUor-like stars

    Full text link
    We present new high resolution (R=18,000) near-infrared spectroscopic observations of a sample of classical FU Orionis stars (FUors) and other young stars with FUor characteristics that are sources of Herbig-Haro flows. Spectra are presented for the region 2.203 - 2.236 microns which is rich in absorption lines sensitive to both effective temperatures and surface gravities of stars. Both FUors and FUor-like stars show numerous broad and weak unidentified spectral features in this region. Spectra of the 2.280 - 2.300 micron region are also presented, with the 2.2935 micron v=2-0 CO absorption bandhead being clearly the strongest feature seen in the spectra all FUors and Fuor-like stars. A cross-correlation analysis shows that FUor and FUor-like spectra in the 2.203 - 2.236 micron region are not consistent with late-type dwarfs, giants, nor embedded protostars. The cross-correlations also show that the observed FUor-like Herbig-Haro energy sources have spectra that are substantively similar to those of FUors. Both object groups also have similar near-infrared colors. The large line widths and double-peaked nature of the spectra of the FUor-like stars are consistent with the established accretion disk model for FUors, also consistent with their near-infrared colors. It appears that young stars with FUor-like characteristics may be more common than projected from the relatively few known classical FUors.Comment: 21 pages, 4 figures, accepted by The Astronomical Journa

    Near-infrared Variability among YSOs in the Star Formation Region Cygnus OB7

    Full text link
    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 square degree region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer (WISE), we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field imaging CAMera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J ~17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on time scales of a few years. We divide the variability into four observational classes: 1) stars with periodic variability stable over long timescales, 2) variables which exhibit short-lived cyclic behavior, 3) long duration variables, and 4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of < 1Myr, with at least one individual, wildly varying, source ~ 100,000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.Comment: ApJ accepted: 44 pages includes 5 tables and 16 figures. Some figures condensed for Astro/p

    V1647 Orionis: Reinvigorated Accretion and the Re-Appearance of McNeil's Nebula

    Full text link
    In late 2003, the young eruptive variable star V1647 Orionis optically brightened by over 5 magnitudes, stayed bright for around 26 months, and then decline to its pre-outburst level. In August 2008 the star was reported to have unexpectedly brightened yet again and we herein present the first detailed observations of this new outburst. Photometrically, the star is now as bright as it ever was following the 2003 eruption. Spectroscopically, a pronounced P Cygni profile is again seen in Halpha with an absorption trough extending to -700 km/s. In the near-infrared, the spectrum now possesses very weak CO overtone bandhead absorption in contrast to the strong bandhead emission seen soon after the 2003 event. Water vapor absorption is also much stronger than previously seen. We discuss the current outburst below and relate it to the earlier event.Comment: 6 pages, 3 figure

    A Catalog of Young Stellar Groups and Clusters Within 1kpc of the Sun

    Full text link
    We present a catalog of near-infrared surveys of young (<= a few 10^6 yr) stellar groups and clusters within 1 kpc from the Sun, based on an extensive search of the literature from the past ten years. We find 143 surveys from 69 published articles, covering 73 different regions. The number distribution of stars in a region has a median of 28 and a mean of 100. About 80% of the stars are in clusters with at least 100 members. By a rough classification of the groups and clusters based on the number of their associated stars, we show that most of the stars form in large clusters. The spatial distribution of cataloged regions in the Galactic plane shows a relative lack of observed stellar groups and clusters in the range 270 deg < l < 60 deg of Galactic longitude, reflecting our location between the Local and Sagittarius arms. This compilation is intended as a useful resource for future studies of nearby young regions of multiple star formation.Comment: 16 pages, 2 tables, 2 figures. To appear in Astronomical Journa

    Low Mass Stars and Substellar Objects in the NGC 1333 Molecular Cloud

    Full text link
    We present the results of near-infrared imaging and low-resolution near- infrared spectroscopy of low mass objects in the NGC 1333 molecular cloud. A JHK survey of an 11.4' x 11.7' area of the northern cluster was conducted to a sensitivity of K < 16 mag. Using near-infrared magnitudes and colors from this and previously published surveys, twenty-five brown dwarf candidates were selected toward the high extinction cloud core. Spectra in the K band were obtained and comparisons of the depths of water vapor absorption bands in our candidate objects with a grid of dwarf,subgiant, and giant standards were made to derive spectral types. These data were then used to derive effective temperatures and stellar luminosities which, when combined with theoretical tracks and isochrones for pre-main sequence objects, resulted in estimates for their masses and ages. The models suggest a median age for the sample of < 1 Myr with substellar masses for at least 9 of the candidates including the x-ray flare source ASR 24. Surface gravities have been estimated for the brown dwarf candidates and, for a given spectral type,found to resemble more closely dwarfs than giants. Using the near-infrared imaging data and age estimates from the spectroscopic sample, an extinction-limited sample in the northern cluster was defined. Consistent with recent studies of other young clusters, this sample exhibits an accretion disk frequency of 0.75 +-0.20 and a mass spectrum slope across the hydrogen-burning limit of alpha < 1.6 where dN/dM ~ M^-(alpha).Comment: 22 postscript pages, 12 postscript figures, and 3 postscript tables. Accepted for publication in the Astronomical Journal (February, 2004

    Spitzer IRAC and MIPS Imaging of Clusters and Outflows in 9 High-mass Star Forming Regions

    Full text link
    We present Spitzer Space Telescope IRAC and MIPS observations toward a sample of nine high-mass star forming regions at a distance of around 2 kpc. Based on IRAC and MIPS 24 ÎĽ\mum photometric results and 2MASS JHKs data, we carry out a census of young stellar objects (YSOs) in a 5' by 5' field toward each region. Toward seven out of the nine regions, we detect parsec sized clusters with around 20 YSOs surrounded by a more extended and sparse distribution of young stars and protostars. For the other two regions, IRAS 20126+4104 and IRAS 22172+5549, the former has the lowest number of YSOs in the sample and shows no obvious cluster, and the latter appears to be part of a larger, potentially more evolved cluster. The deep IRAC imaging reveals at least twelve outflows in eight out of the nine regions, with nine outflows prominent in the 4.5 ÎĽ\mum band most probably attributed to shocked H2_2 emission, two outflows dominated by scattered light in the 3.6 and 4.5 ÎĽ\mum bands, and one outflow standing out from its hydrocarbon emission in the 8.0 ÎĽ\mum band. In comparison with previous ground-based observations, our IRAC observations reveal new outflow structures in five regions. The dramatically different morphologies of detected outflows can be tentatively interpreted in terms of possible evolution of massive outflows. The driving sources of these outflows are deeply embedded in dense dusty cores revealed by previous millimeter interferometric observations. We detect infrared counterparts of these dusty cores in the IRAC or MIPS 24 ÎĽ\mum bands. Reflection nebulae dominated by the emission from UV heated hydrocarbons in the 8 ÎĽ\mum band can be found in most regions and they may imply the presence of young B stars.Comment: 76 pages, 25 figures and 5 tables, ApJ in press, a full resolution version available at http://www.cfa.harvard.edu/~kqiu/spitzer.pd
    • …
    corecore