98 research outputs found

    Emergence and enhancement of feedback control induced quantum entanglement

    Full text link
    We present a scheme for controlling quantum correlations by applying feedback to the cavity mode that exits a cavity while interacting with a mechanical oscillator and magnons. In a hybrid cavity magnomechanical system with a movable mirror, the proposed coherent feedback scheme allows for the enhancement of both bipartite and tripartite quantum correlations. Moreover, we demonstrate that the resulting entanglement remains robust with respect to ambient temperatures in the presence of coherent feedback control.Comment: 6 pages and 5 figure

    Achieving Strong Magnon Blockade through Magnon Squeezing in a Cavity Magnetomechanical System

    Full text link
    We propose a scheme to achieve magnon (photon) blockade by using magnon squeezing within a cavity magnomechanical system under weak pump driving. Under ideal conditions, we observe a substantial magnon blockade effect, as well as simultaneous photon blockade. Moreover, both numerical and analytical results match perfectly, providing robust evidence of consistency. In addition to calculating optimal parametric gain and detuning values, we can improve the second-order correlation function. The proposed scheme will be a pioneering approach towards magnon (photon) blockade in experimental cavity magnomechanical systems.Comment: 6 page

    Nonlinear opto-vibronics in molecular systems

    Full text link
    We analytically tackle opto-vibronic interactions in molecular systems driven by either classical or quantum light fields. In particular, we examine a simple model of molecules with two relevant electronic levels, characterized by potential landscapes with different positions of minima along the internuclear coordinate and of varying curvatures. Such systems exhibit an electron-vibron interaction, which can be comprised of linear and quadratic terms in the vibrational displacement. By employing a combination of conditional displacement and squeezing operators, we present analytical expressions based on a quantum Langevin equations approach, to describe the emission and absorption spectra of such nonlinear molecular systems. Furthermore, we examine the imprint of the quadratic interactions onto the transmission properties of a cavity-molecule system within the collective strong coupling regime of cavity quantum electrodynamics

    Parametrically enhancing sensor sensitivity at an exceptional point

    Full text link
    We propose a scheme to enhance the sensitivity of Non-Hermitian optomechanical mass-sensors. The benchmark system consists of two coupled optomechanical systems where the mechanical resonators are mechanically coupled. The optical cavities are driven either by a blue or red detuned laser to produce gain and loss, respectively. Moreover, the mechanical resonators are parametrically driven through the modulation of their spring constant. For a specific strength of the optical driving field and without parametric driving, the system features an Exceptional Point (EP). Any perturbation to the mechanical frequency (dissipation) induces a splitting (shifting) of the EP, which scales as the square root of the perturbation strength, resulting in a sensitivity-factor enhancement compared with conventional optomechanical sensors. The sensitivity enhancement induced by the shifting scenario is weak as compared to the one based on the splitting phenomenon. By switching on parametric driving, the sensitivity of both sensing schemes is greatly improved, yielding to a better performance of the sensor. We have also confirmed these results through an analysis of the output spectra and the transmissions of the optical cavities. In addition to enhancing EP sensitivity, our scheme also reveals nonlinear effects on sensing under splitting and shifting scenarii. This work sheds light on new mechanisms of enhancing the sensitivity of Non-Hermitian mass sensors, paving a way to improve sensors performance for better nanoparticles or pollutants detection, and for water treatment.Comment: 12 pages, 5 figures. Comments are welcom

    Quantum information entropy of heavy mesons in the presence of a point-like defect

    Full text link
    Using Schr\"{o}dinger's formalism, we investigate the quantum eigenstates of the heavy mesons trapped by a point-like defect and by Cornell's potential. One implements this defect to the model considering a spherical metric profile coupled to it. Furthermore, the Nikiforov-Uvarov method is applied to theory to study the quantum eigenstates of the heavy mesons. To calculate the quantum information entropy (QIE), one considers the wave functions that describe the charmonium and bottomonium states. To explore the QIE, we use the well-known Shannon's entropy formulated at the position and reciprocal space. The analysis of the QIE gives us relevant information about how the quantum information change with the variation of the point-like defect. Consequently, considering the Bialynicki-Birula and Mycielski (BBM) relation, we show how this defect influences the quarkonium position and momentum uncertainty measures.Comment: 15 pages, 2 figures, 1 tabl

    Robust stationary mechanical squeezing in a kicked quadratic optomechanical system

    Get PDF
    We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These “optical spring kicks” tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation processes one can generate a stationary state with more than 10 dB of squeezing in a realistic scenario, even starting from moderately “precooled” initial thermal states

    ASIC Design with AHPL

    Get PDF

    Pretenuring for Java

    Get PDF
    Pretenuring is a technique for reducing copying costs in garbage collectors. When pretenuring, the allocator places long-lived objects into regions that the garbage collector will rarely, if ever, collect. We extend previous work on profiling-driven pretenuring as follows. (1) We develop a collector-neutral approach to obtaining object lifetime profile information. We show that our collection of Java programs exhibits a very high degree of homogeneity of object lifetimes at each allocation site. This result is robust with respect to different inputs, and is similar to previous work on ML, but is in contrast to C programs, which require dynamic call chain context information to extract homogeneous lifetimes. Call-site homogeneity considerably simplifies the implementation of pretenuring and makes it more efficient. (2) Our pretenuring advice is neutral with respect to the collector algorithm, and we use it to improve two quite different garbage collectors: a traditional generational collector and an older-first collector. The system is also novel because it classifies and allocates objects into 3 categories: we allocate immortal objects into a permanent region that the collector will never consider, long-lived objects into a region in which the collector placed survivors of the most recent collection, and shortlived objects into the nursery, i.e., the default region. (3) We evaluate pretenuring on Java programs. Our simulation results show that pretenuring significantly reduces collector copying for generational and older-first collectors. 1

    The influence of genetic structure on phenotypic diversity in the Australian mango (Mangifera indica) gene pool

    Get PDF
    Genomic selection is a promising breeding technique for tree crops to accelerate the development of new cultivars. However, factors such as genetic structure can create spurious associations between genotype and phenotype due to the shared history between populations with different trait values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a fundamental requirement of genomic selection models. Here, we employed 272 single nucleotide polymorphisms from 208 Mangifera indica accessions to explore whether the genetic structure of the Australian mango gene pool explained variation in trunk circumference, fruit blush colour and intensity. Multiple population genetic analyses indicate the presence of four genetic clusters and show that the most genetically differentiated cluster contains accessions imported from Southeast Asia (mainly those from Thailand). We find that genetic structure was strongly associated with three traits: trunk circumference, fruit blush colour and intensity in M. indica. This suggests that the history of these accessions could drive spurious associations between loci and key mango phenotypes in the Australian mango gene pool. Incorporating such genetic structure in associations between genotype and phenotype can improve the accuracy of genomic selection, which can assist the future development of new cultivars. © 2022, The Author(s)
    corecore