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Robust stationary mechanical squeezing in a kicked quadratic optomechanical system
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We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a
quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents
periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These
“optical spring kicks” tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation
processes one can generate a stationary state with more than 10 dB of squeezing in a realistic scenario, even
starting from moderately “precooled” initial thermal states.
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I. INTRODUCTION

Squeezed states are characterized by an uncertainty of a
single motional quadrature which is below the zero-point level.
Such states in a mechanical system are particularly useful for
ultrasensitive force detection [1], as they are the optimal states
of a harmonic oscillator providing the ultimate force sensitivity
in the presence of losses [2]. Squeezed states are also important
in quantum information, as they have been shown to represent a
general resource for continuous variable quantum information
processing [3]. Coherent parametric driving is the most popular
and direct scheme for generating squeezing of a bosonic mode,
and for a mechanical resonator it is realized by modulating the
spring constant at twice the mechanical resonance frequency.
Such a scheme has been first proposed and implemented
in the classical domain for squeezing thermal noise in a
cantilever [4] and in a trapped ion [5]. In the quantum limit,
it can achieve at best steady-state squeezing 50% below
the zero-point level (the so-called 3 dB limit) [6], because
by further increasing the modulation strength, the system
becomes unstable.

The recent rapid development of cavity optomechanics
[7–9] describing the interaction and mutual control between
mechanical and cavity electromagnetic modes, has provided
new paths and opportunities for the generation and manip-
ulation of squeezing. Quadrature squeezing of the cavity
output light due to the optomechanical interaction has been
recently demonstrated [10,11], almost 20 years after its
prediction [12,13], despite its wide applicability in precision
measurements. Mechanical squeezing below the zero-point
level has not been achieved yet, even though various schemes
for its generation have been proposed. Coherent parametric
driving is easily achieved by modulating the radiation pressure
force as in [14–18]. Better squeezing, below the 3 dB limit, can
be obtained by continuously injecting squeezed light directly
into the cavity [19], but this is difficult as one needs a source
of highly squeezed light and a high state-transfer efficiency
at the quantum level. The 3 dB limit can also be beaten
with closed-loop controls, i.e., exploiting continuous quantum
feedback [20–24], but they are not easy to implement in the
quantum regime, as they are seriously limited by nonunit
detection efficiency and typically require fast measurements
and feedback loops.

Here we show that robust stationary mechanical squeezing,
more than 10 dB below the vacuum level, is achievable in
a quadratic optomechanical system by exploiting impulsive
open-loop controls, which are realized by driving the cavity
with a suitably pulsed laser. The intracavity photon number is
periodically peaked, correspondingly stiffening the harmonic
potential, and realizing “optical spring kicks.” Such an impul-
sive “bang-bang” scheme is related with dynamical decoupling
schemes [25–27] used for decoupling systems from their
environment and suppressing decoherence. Here, however,
optical spring kicks rather cooperate with environmental
fluctuation-dissipation processes, selecting and stabilizing
phase-dependent nonclassical fluctuations associated with the
stationary squeezed state. This scheme differs from those
of Refs. [28,29], exploiting reservoir engineering schemes
[30,31], and which require operation in the well-resolved
sideband regime. These latter schemes are limited by the effect
of counter-rotating terms in the optomechanical interaction,
while the present scheme is instead optimal in the unresolved
sideband regime κ � ωm.

II. THE MODEL

We consider an optomechanical system formed by a driven
cavity mode interacting quadratically with a mechanical
resonator (MR). Such a quadratic interaction is realized
whenever the frequency of an electromagnetic mode depends
quadratically upon the displacement of a mechanical element.
This occurs for example in a membrane-in-the-middle setup
when the membrane is placed at a cavity node [32–35], or
trapping either levitating nanoparticles [36–39] or an ultracold
atomic cloud [40] around an intensity maximum of a cavity
mode. Quadratic optomechanical coupling is achieved also at
avoided crossing between cavity resonances in double-cavity
setups as in Ref. [41]. We assume that the cavity mode is
resonantly driven, that is,

H = �ωm

2
(p2 + q2) + �ωca

†a + �g2a
†aq2

+ i�[E0(t)e−iωct a† − E0(t)eiωct a], (1)

where ωm is the resonance frequency of the MR, q and p

its dimensionless position and momentum operators such that
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[q,p] = i, a the cavity mode annihilation operator and ωc its
frequency, E0(t) = √

2P0(t)κ0/� ωc, with κ0 the cavity decay
rate through the input mirror, and P0(t) is the time-dependent
input power. Finally g2 is the quadratic optomechanical
coupling rate.

The cavity is intensely driven so that the intracavity field is
well described in terms of its classical amplitude α(t) = 〈a(t)〉,
satisfying the evolution equation α̇ = −κα − ig2q

2α + E0(t)
in the frame rotating at the laser frequency, where κ = κ0 + κL

is the total decay rate, with κL the rate associated with photon
losses due to transmission through the other mirror, absorption,
and scattering. The quadratic coupling is typically small, so
that κ � g2〈q2〉 and we can neglect the effect of the MR on
the intracavity amplitude, which is given by the very small
fluctuating detuning caused by the MR position fluctuations.
Therefore, we have the following intracavity field amplitude
α(t) = α(0)e−κt + ∫ t

0 ds E0(s)e−κ(t−s), and we end up with the
purely mechanical Hamiltonian

H = �ωm

2
p2 + �

2
[ωm + 2g2|α(t)|2]q2, (2)

describing a resonator with a spring constant whose time
dependence can be controlled by the driving laser.

The MR is unavoidably coupled to its thermal reservoir,
causing fluctuation-dissipation processes. Its effect can be
described by means of quantum Langevin equations, obtained
by adding to the Heisenberg equations of motion associated
with Eq. (2), damping with rate γm and a noise term [42]

q̇ = ωmp, (3a)

ṗ = −[ωm + 2g2|α(t)|2]q − γmp + ξ, (3b)

where ξ is Gaussian quantum stochastic force with zero
mean value and correlation function

〈ξ (t)ξ (t ′)〉 = γm

ωm

∫ �c

0

dω

2π
e−iω(t−t ′)ω

[
coth

(
�ω

2kBT

)
+ 1

]

(4)

(kB is the Boltzmann constant, �c is the frequency cutoff of
the reservoir, and T is the temperature of the membrane).

We now assume that the driving laser is pulsed, with pulses
of duration τp and separated by a time interval τ . Satisfactory
control of |α(t)|2 is obtained only if the pulsed laser does not
drive other nearby cavity modes. This is achieved by placing,
for example, a membrane [32] or a localized atomic ensemble
[40] at a field node, by using a spatial mode cleaner so that
transverse modes are not excited, and if the pulse bandwidth
is smaller than the cavity free spectral range, 1/τp < c/2L (L
is the cavity length). The purely quadratic interaction could be
maintained during the pulsed driving by locking the membrane
at a cavity node (see, for example, [43]). We also assume
that the cavity decay time is much longer than the driving
pulse duration but much smaller than the pulse separation,
that is, 1/τp � κ � 1/τ . In this way the cavity mode is
quickly excited and then decays to the vacuum state before the
arrival of the next pulse. Therefore, also the intracavity photon
number |α(t)|2 has a pulsed time dependence with period τ ,
and is nonzero only within a short time interval 
t of the
order of 1/κ . The periodically pulsed laser therefore realizes
a MR subject to optical spring kicks, which tend to squeeze its

position variance through the periodic strong increase of the
confining harmonic potential (see [44] for a first description of
the scheme). We now show that such a pulsed optomechanical
scheme is able to generate a stationary squeezed state of the
MR even starting from moderately cooled systems and using
state-of-the-art apparatuses.

We are interested in the long-time dynamics of the MR, and
since we have assumed κτ � 1, we can safely approximate the
effect of the pulsed time dependence of the intracavity photon
number in terms of a Dirac delta, that is, |α(t)|2 ∝ δ(t). From
Eq. (2), one has that a single kick is described by the unitary
operator

UK = eiθq2
, (5)

where θ = 2g2
∫

t

dt |α(t)|2 is the dimensionless parameter
quantifying the effect of the kick. It is immediate to see that the
kick performs the transformation q → q and p → p − 2θq.

Between the above kicks the cavity is empty (at optical
frequencies we can neglect thermal photons) and therefore for
a time interval of duration τ the MR is subject to the dissipative
and noisy dynamics described by Eqs. (3) with α(t) = 0.
Equation (4) shows that ξ (t) is generally a non-Markovian
Gaussian stochastic process with a nonzero correlation time;
however, Eqs. (3) reduce to a Markovian dynamics within
the time interval τ at large enough frequency cutoffs and
temperatures, �cτ � 1 and kBT τ/� � 1, where ξ (t) becomes
δ correlated [42,45],

〈ξ (t)ξ (t ′)〉 	 (2n̄ + 1)γmδ(t − t ′) + i
γm

ωm

δ′(t − t ′), (6)

where n̄ = (exp{�ωm/kBT } − 1)−1 	 kBT /�ωm − 1/2 is the
mean thermal phonon number, and δ′(t − t ′) is the derivative
of the Dirac δ. The condition �cτ � 1 is easily satisfied
because typical systems have �c � κ and we have already
assumed κτ � 1. The condition kBT τ/� 	 n̄ωmτ � 1 is
more stringent, but is satisfied under current experimental
conditions.

III. DYNAMICS OF SECOND-ORDER MOMENTS

If the MR starts from a Gaussian state, both the kicks
and the linear dissipative evolution between them preserve
the Gaussian nature of the MR state. In particular it is
realistic to consider an initial thermal state with equilibrium
thermal phonon number n̄, which is a Gaussian state with
zero first order moments. In this case the mean values 〈q〉
and 〈p〉 remain equal to zero at all times, and the dynamics
is fully described by the time evolution of the second order
moments σq = 〈q2〉, σqp = 〈qp + pq〉/2, and σp = 〈p2〉. The
corresponding equations of motion are obtained using Eqs. (3)
and (6) and are given by [45]

σ̇q = 2ωmσqp, (7a)

σ̇qp = ωm(σp − σq) − γmσqp, (7b)

σ̇p = −2ωmσqp − 2γmσp + γm(2n̄ + 1). (7c)

Using the three-dimensional vector v(t) =
(σq(t),σqp(t),σp(t))T , the solution of these equations

023849-2



ROBUST STATIONARY MECHANICAL SQUEEZING IN A . . . PHYSICAL REVIEW A 89, 023849 (2014)

can be written in compact form as

v(t) = M(t)v(0) + vinh(t),

where M(t) is a 3 × 3 matrix which decays to zero at large t due
to damping and vinh(t) is an inhomogeneous vector term which
is proportional to the thermal equilibrium values n̄ + 1/2. M(t)
and vinh(t) can be easily calculated from Eqs. (7). The effect
of a kick on the second order moments is instead given by

v′ = Kv,K =
⎛
⎝1 0 0

−2θ 1 0
4θ2 −4θ 1

⎞
⎠ . (8)

Therefore one has a cyclic evolution of duration τ which is
described by the map

v[(n + 1)τ ] = M(τ )Kv[nτ ] + vinh(τ ). (9)

Iteration of this formula gives the solution of the stroboscopic
dynamics of the MR at times nτ ,

v[nτ ] = A(τ,θ )nv(0) + I − A(τ,θ )n

I − A(τ,θ )
vinh(τ ), (10)

with the 3 × 3 matrix A(τ,θ ) = M(τ )K . Since
limn→∞ A(τ,θ )n = 0, the stroboscopic dynamics
tends to a stationary Gaussian state of the MR
characterized by the following second order moments
v(∞) = limn→∞ v [nτ ] = [I − A(τ,θ )]−1 vinh(τ ).

The MR state is squeezed when there is a mechanical
quadrature q(ϕ) = q cos ϕ + p sin ϕ with variance below
1/2, which is the vacuum noise level in our definitions, i.e.,
if there is a phase ϕ such that 〈q(ϕ)2〉 < 1/2. By minimizing
with respect to ϕ, one has that

σmin = min
ϕ

〈q(ϕ)2〉 = 1
2

[
σp + σq −

√
(σp − σq)2 + 4σ 2

qp

]
.

(11)

We expect intuitively to achieve better squeezing for increasing
kick strength θ and for decreasing time separation τ , because
more frequent kicks make it harder for the MR to reach the
thermal equilibrium values σ th

q = σ th
p = n̄ + 1/2. We confirm

this fact by numerically studying a state-of-the-art membrane-
in-the-middle setup like that of Ref. [35]. In fact, choosing
a cavity with L = 0.1 mm and finesse F 	 40 000, one has
κ 	 108 s−1, and assuming a driving laser with wavelength
λ = 1550 nm, and pulses of duration τp 	 0.1 ns, peak power
P 	 1 W, separated by τ = 10−7 s, the above assumptions
c/2L > τ−1

p � κ � τ−1 are satisfied, and the intracavity pho-
ton number achieves peak values |α(t)|2 	 6.7 × 1010. Placing
the membrane (with mass m and reflectivity R) at a node one
has g2 = (

16π2c�/λ2Lmωm

) √
R/(1 − R), so that choosing

m = 0.25 × 10−11 kg, R 	 0.2, and ωm = 0.5 × 106 s−1, one
gets g2 	 0.8 × 10−2 s−1 and θ 	 10. Similar values of θ ,
κ , and ωm can be obtained with the ultracold atom system
of Ref. [40], the main difference being a larger coupling
g2 ∼ 103 s−1 and lower peak input power P 	 10 μW.

We show the stroboscopic evolution of the mechanical state
in the case of damping γm = 102 s−1 in Figs. 1 and 2. We plot
the minimum variance σmin (top) and the purity of the MR
Gaussian state ρ(nτ ), P = Tr[ρ(nτ )2] = [4(σpσq − σ 2

qp)]−1/2

(bottom) versus nτ for n̄ = 10 in Fig. 1 and n̄ = 200 in Fig. 2.
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FIG. 1. (Color online) (a) The minimum quadrature variance σmin

[in dB with respect to the vacuum level, i.e., 10 log10 (2σmin)] versus
nτ for n̄ = 10. The insets show a fine-grained view of the stroboscopic
dynamics at different times. (b) Purity (and in the insets, von Neumann
entropy S and effective occupancy neff ) of the MR state versus nτ . The
other parameters are ωm = 0.5 × 106 s−1, γm = 102 s−1, τ = 10−7 s,
and θ = 10.

We recall that n̄ determines both the initial thermal state of the
MR and its dynamics between the kicks according to Eqs. (7).
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FIG. 2. (Color online) The same as in Fig. 1, except that n̄ = 200.
One still gets squeezing, but the steady state is far from being pure.
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FIG. 3. (Color online) The minimum quadrature variance σmin (in
dB as in Fig. 1), and the purity P (in the inset) versus nτ in the case
when θ randomly fluctuates from kick to kick according to a Gaussian
distribution centered around θ = 10 and with variance 0.001. The
other parameters are as in Fig. 1. The blue solid line refers to a single
experimental run, while the red dotted line refers to the average over
100 trajectories.

When n̄ = 10, the MR stroboscopically tends to a strongly
squeezed stationary state, more than 13 dB below the vacuum
level; moreover, stationary mechanical squeezing of 0.8
dB is achieved even when starting from n̄ = 200. Optical
spring kicks also purify the MR state, and in particular
when n̄ = 10, the steady state is practically a pure minimal
uncertainty squeezed state. This is confirmed by the decay
to zero of the von Neumann entropy of the state S, which is
related to the purity P by S = [(1 − P )/2P ] ln[(1 + P )/(1 −
P )] − ln[2P/(1 + P )] [46] [see the inset in Fig. 1(b)].
The purification provided by the optical spring kicks also
asymptotically “cools” the MR, as shown by the decay of
the effective mechanical occupancy neff = (σp + σq − 1)/2
[see the inset in Figs. 1(b) and 2(b)]. In the steady state
one has approximately position squeezing because the phase
with minimum variance is ϕmin 	 −ωmτ/8 	 −0.006 so that
σmin 	 σq . The stationary squeezed state is reached with
fast oscillations associated with the frequency ωm [see the
zoomed insets in Figs. 1(a) and 2(a)], and squeezing below
the vacuum noise level is steadily achieved after about 105

kicks.
In Fig. 3 we show that the proposed scheme for generating

stationary mechanical squeezing is robust with respect to
fluctuations of the laser pulses. In fact Fig. 3 shows the
stroboscopic time evolution of σmin (a) and of the purity
P (b) in the same set of parameters of Fig. 1, except that
now the kick parameter θ randomly changes from kick to

kick according to a Gaussian distribution centered around
θ = 10 and with variance equal to 0.001, modeling pulse
area fluctuations at 0.3% level. The blue solid line refers to
a single numerical experimental run, while the red dotted line
refers to the average over 100 trajectories. One gets large
squeezing even in the presence of appreciable fluctuations.

Reaching the chosen values n̄ � 200 only with cryogenic
techniques is very hard, since it requires operating below 1
mK. However they could be achieved with a standard laser
cooling scheme [47,48]. Therefore the whole experiment could
be realized by driving a high-finesse cavity with two lasers at
well distinct wavelengths: A first laser drives a mode linearly
interacting with the MR and provides cooling; the second
one is the pulsed laser considered above, which interacts
quadratically with the MR. The large value of mechanical
damping γm = 102 s−1 considered here is consistent with the
presence of an additional moderate laser cooling process.

One could detect the generated squeezed state using the
scheme suggested in Ref. [49] or the pulsed homodyne
measurement scheme of Ref. [50], both requiring an additional
probe field linearly interacting with the MR. However, one can
exploit again the quadratic optomechanical interaction for a di-
rect detection of squeezing. In fact, in the bad cavity limit κ �
ωm we are considering, and at first order in g2, one has that the
output phase quadrature Yout(t) = −i[aout(t) − aout(t)] of any
probe field quadratically interacting with the MR is given by

Yout(t) 	 Y 0
out(t) + g2

κ
q2(t)X0

out(t), (12)

where X0
out(t) = a0

out(t) + a0
out(t) is the output amplitude

quadrature of the probe and the index 0 denotes the zeroth
order output field without the optomechanical interaction.
Therefore a homodyne measurement of the probe allows one
to detect directly the squeezed position variance of the MR.

In conclusion, we have shown an open-loop bang-bang
control which could generate stationary mechanical squeezing
more than 10 dB below the vacuum noise level, using
state-of-the-art apparatus and starting from moderately cooled
mechanical states. Stationary squeezing is obtained by using
optical spring kicks, that is, by appropriately pulsing an op-
tomechanical cavity with quadratic interaction. Such a robust
and large mechanical squeezing could provide unprecedented
force sensitivity [2].
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