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The influence of genetic 
structure on phenotypic diversity 
in the Australian mango (Mangifera 
indica) gene pool
Melanie J. Wilkinson 1,2*, Risa Yamashita 3, Maddie E. James 1,2, Ian S. E. Bally 4, 
Natalie L. Dillon 4, Asjad Ali 4, Craig M. Hardner 3,5 & Daniel Ortiz‑Barrientos 1,2,5

Genomic selection is a promising breeding technique for tree crops to accelerate the development of 
new cultivars. However, factors such as genetic structure can create spurious associations between 
genotype and phenotype due to the shared history between populations with different trait 
values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a 
fundamental requirement of genomic selection models. Here, we employed 272 single nucleotide 
polymorphisms from 208 Mangifera indica accessions to explore whether the genetic structure of 
the Australian mango gene pool explained variation in trunk circumference, fruit blush colour and 
intensity. Multiple population genetic analyses indicate the presence of four genetic clusters and 
show that the most genetically differentiated cluster contains accessions imported from Southeast 
Asia (mainly those from Thailand). We find that genetic structure was strongly associated with three 
traits: trunk circumference, fruit blush colour and intensity in M. indica. This suggests that the history 
of these accessions could drive spurious associations between loci and key mango phenotypes in 
the Australian mango gene pool. Incorporating such genetic structure in associations between 
genotype and phenotype can improve the accuracy of genomic selection, which can assist the future 
development of new cultivars.

Horticultural tree crops are vital for sustainable food  production1 and ornamental and industrial use. Tree crops 
can be more sustainably cultivated over time than annual field crops, thus helping to manage food supply for 
an increasing world  population2. To create new tree fruit cultivars with improved productivity and quality, we 
must develop breeding technologies that overcome biological limitations to their production. Tropical species, 
such as mango, are often large and  vigorous3, leading to canopies that rapidly outgrow their orchard space. This 
generates shade, providing a breeding ground for  disease4. To avoid the adverse effects of tree size, trees are 
traditionally planted at low density and heavily pruned each  year4, leading to a reduction in overall production 
per hectare and an increased cost per unit output. Consequently, a quest to breed smaller, less vigorous trees 
while maintaining high yields of quality fruit is  underway5,6. Such efforts will produce mango that can be grown 
in intensive, high-density orchards that produce more fruit per  hectare7.

Traditional tree breeding is slow, as evaluations require an assessment of phenotypic performance in mature 
trees over many years to account for the effects of variable spatial and temporal environments on phenotypic 
diversity. These evaluations, in combination with a long juvenile phase (typically 2–4  years4), can result in a selec-
tion process of up to or longer than 10 years from field  planting8, making the rapid development of new cultivars 
unfeasible. The time for cultivar development could be reduced by predicting future phenotypic performance 
in young individuals using genomic selection, as demonstrated in  apples9, sweet  cherry10 and  strawberry11. 
Genomic selection uses genotype to phenotype maps from a training population to predict phenotypic vari-
ation in untested populations using marker  data12,13. Thus, once a genomic selection model has been created, 
the length and expense of phenotyping key traits may be reduced. Genomic selection for tree size and vigour 
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of progeny could therefore improve the breeding process and reduce the cost of mango breeding compared to 
traditional breeding approaches.

The primary assumption of genomic selection is that genetic markers are closely linked on a chromosome 
with the causative loci that contribute to the trait of  interest14. In general, the closer the marker is to the causative 
loci, the more accurate the genotype to phenotype map. However, genetic structure can create statistical associa-
tions between loci that are not physically linked. This occurs because evolutionary forces such as migration, drift 
and mutation can make allelic combinations between unlinked loci more common than expected by  chance15. 
Genetic structure can therefore create spurious associations between genetic markers and traits. Furthermore, 
genetic structure is often prevalent in modern crops, particularly those moving across the world via human 
migrations, which likely experienced drastic fluctuations in population size and suffered from inbreeding after 
crossing genetically related individuals with favourable  traits16.

Differentiating uninformative loci due to genetic structure from those linked to causative loci is a com-
mon problem observed in genetic studies of human  disease17,18 and the study of trait evolution across diverse 
 taxa19,20,21,23. Fortunately, we can improve the accuracy of the genotype to phenotype map by accounting for 
genetic covariation between traits and markers due to genetic  structure24–26, a practice that can potentially 
improve the quality of horticultural breeding programs that start from highly variable germplasm collections. 
Here, we evaluate the assumption that horticultural trait variation segregates independently from genetic struc-
ture using Mangifera indica in the gene pool of the Australian Mango Breeding Program.

Mango is a major horticultural tree crop worldwide, yet an understanding of the domestication history is still 
debated. The centre of origin of the genus Mangifera is Southeast Asia, but the origin of the species M. indica is 
still under question. Based on the fossil record,  Mukherjee27 and  Blume28 suggested that mango originated in 
the Malay Archipelago less than 2.58 million years ago. However, recent molecular taxonomy suggests it evolved 
within a large area of Northwest Myanmar, Bangladesh and Northeast  India29. From this area, human migration 
and trading led to the dispersion of mangoes to many regions of the  world30.

Several studies have evaluated the genetic structure of domesticated  mango31,32,33,34,35,36,38. Yet, to our knowl-
edge, there have been no published studies on the effects of genetic structure on phenotypic variation in mango 
accessions. One study with 60 mango accessions from India accounted for genetic structure in a marker trait 
 analysis35, however, Lal et al.35 did not assess the effect of genetic structure on their genotype to phenotype map. 
Without understanding the effect of genetic structure on phenotypic diversity, we do not know whether we are 
creating false associations between genetic markers and key mango traits. Here, we directly examined the effects 
of genetic structure on the creation of spurious associations between genetic markers and three traits – trunk 
circumference (a proxy for tree size), fruit blush colour and intensity – in the Australian mango gene pool. We 
assessed 272 SNP markers genotyped in 208 M. indica accessions imported worldwide and revealed statistical 
associations between genetic markers and traits arising from genetic structure. These results will help guide 
future studies incorporating genetic structure into their genomic selection models.

Results
Genetic structure in the Australian mango gene pool. Genetic structure was found in both a hier-
archical cluster analysis (HCA) and a principal component analysis (PCA) across all 208 M. indica accessions 
(Fig. 1). Consistent with a recent origin of all accessions, the HCA created a dendrogram with only short branches 
in the centre (Fig. 1a), indicating few genetic differences separate the clusters. The optimal number of genetic 
clusters was K = 4, as indicated by the HCA and the elbow plot. The elbow plot from the HCA shows diminishing 
returns in the amount of variance explained after five clusters (Fig. S1). In the dendrogram, cluster 1 is the most 
genetically differentiated cluster, which only contains accessions imported from Southeast Asia. Cluster 1 is most 
distinct from clusters 2 and 3. In contrast, cluster 4 is more similar to cluster 1 (Fig. 1a) and contains a mixture of 
samples across geographical regions (e.g., South Asia, Southeast Asia, Americas, and Oceania; Table 1; Fig. 2). In 
the reduced principal component (PC) space (Fig. 1b), genetic clusters largely overlap, with South Asian acces-
sions (mostly Indian accessions) primarily concentrated in the centre of the multivariate space. Genetic clusters 
from Southeast Asia, the Americas, and Oceania occur towards the edges of the genotypic space, with Southeast 
Asia distinctly separated in the PC1 axis.

In agreement with the HCA and PCA results above, we identified genetic clusters across the 208 M. indica 
accessions (Fig. 3) using the Bayesian clustering approach implemented in STRU CTU RE39. Most accessions 
contained large amounts of admixture or shared ancestral polymorphism, where portions of their genome were 
assigned to different genetic groups. When genetic differentiation was separated into only two groups (K = 2, see 
Methods), Southeast Asia formed one group, while all other accessions were in a second group (Fig. 3). Relax-
ing this constraint to K = 3 revealed the Americas and Oceania accessions each form a group. Populations are 
almost indistinguishable when K is larger than 4. Consistent with the elbow plot discussed above, the Evanno 
 method40 and the log probability of K values show that K = 4 was the optimal number of clusters (Fig. S2). Most 
accessions show signatures of admixture as indicated by diversity from multiple groups. Admixture signals are 
particularly pronounced in accessions from South Asia, mainly those from India, which do not form a distinct 
genetic group with any K-value.

Together, the HCA, PCA and STRU CTU RE results suggest that mango accessions of the Australian mango 
gene pool consist of four genetic groups. Southeast Asian accessions are most differentiated relative to the rest 
of the world, suggesting that these accessions might have evolved differently, thus creating a heterogenous gene 
pool for cultivar creation in the Australian Mango Breeding Program.

Patterns of genetic diversity across the Australian mango gene pool. Genetic diversity analyses 
revealed high levels of heterozygosity and variable patterns of inbreeding across regions (Table  2). Levels of 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20614  | https://doi.org/10.1038/s41598-022-24800-7

www.nature.com/scientificreports/

Figure 1.  Genetic structure analyses for K = 4 of the 208 accessions of M. indica from six geographical regions 
across the world. (a) A circular dendrogram showing the hierarchical cluster analysis using complete linkage 
clustering. Each branch represents an individual with the colour of the branch representing the geographical 
region the sample was imported into Australia from. (b) Principal components analysis, where the ellipses (95% 
probability) represent the four clusters from the hierarchical cluster analysis.
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expected heterozygosity  (HE) and observed heterozygosity  (HO) were high across the world, with the Americas 
having the highest levels of observed heterozygosity  (HO = 0.49) and Southeast Asia having the lowest  (HO = 0.39). 
Accessions from the Americas contain an excess of heterozygote individuals (i.e., a negative inbreeding coeffi-
cient;  FIS = − 0.11; 95% CI − 0.13 to − 0.08). On the other hand, accessions from Southeast Asia are mildly inbred 
(i.e., a positive inbreeding coefficient;  FIS = 0.08; 95% CI 0.06 to 0.11). Private alleles were absent in all regions, 
indicating either a large intermixing population or the presence of ancestral polymorphisms that have not been 
sorted across geography.

Genetic differentiation comparisons showed variable patterns of  FST between genetic clusters and between 
regions of import. Comparisons between regions have low levels of  FST, which range from − 0.016 to 0.112 
(Table 3a). Southeast Asia and the Middle East, closely followed by the comparison between Southeast Asia and 
the Americas, showed the highest level of genetic differentiation  (FST = 0.112 and 0.107, respectively). In contrast, 
 FST between clusters ranged from 0.051 to 0.286, with cluster 1 comparisons having the highest values (Table 3b). 
Overall, there is low genetic divergence amongst regions of the Australian mango gene pool and high genetic 
divergence between genetic clusters.

Genetic structure and region of import influence phenotypic diversity. Phenotypic correlation 
analyses revealed associations between fruit blush colour and intensity but not between them and trunk circum-
ference. Trunk circumference, a continuous trait, was highly variable at 9 years, ranging from 27 to 70 cm, while 
categorical fruit traits were less variable (see Fig. S3 for photos of each fruit blush colour and intensity category). 
In a single-factor linear model, fruit blush colour and intensity were strongly correlated (LR χ2 = 373.168, df = 4, 
p < 0.0001,  R2 = 0.61). However, given that 39% of mango accessions lacked fruit blush colour and therefore 
lacked fruit blush intensity, we removed ‘no blush’ and retested the association. It led to a significant yet weaker 
association between the fruit traits (LR χ2 = 95.077, df = 3, p < 0.0001,  R2 = 0.28), indicating the importance of no 
blush in our understanding of the genetics of blush in mango. We found no correlation between trunk circum-
ference and fruit blush colour (Fig. S4;  F4,203 = 1.093, p = 0.3613,  R2 = 0.02) and trunk circumference and fruit 

Table 1.  The number of accessions of M. indica from each country of import and their assigned genetic 
clusters from the hierarchical cluster analysis for K = 4 calculated from 272 biallelic SNPs. Countries have been 
grouped into six geographical regions of import.

Country Country code cluster 1 cluster 2 cluster 3 cluster 4 Country total

Africa

East Africa EAF 1 1

Kenya KEN 1 1

South Africa ZAF 3 3

Americas

Brazil BRA 1 1 2

Jamaica JAM 1 1 1 3

Saint Lucia LCA 1 1

United States of America USA 32 8 40

Middle East

Israel ISR 3 1 4

Oceania

Australia AUS 37 15 52

French Polynesia PYF 1 1 2

South Asia

India IND 14 15 5 34

Pakistan PAK 1 1

Sri Lanka LKA 1 2 3

Southeast Asia

Indonesia IDN 2 6 2 10

Malaysia MYS 1 2 1 4

Malesia MLS 1 2 1 4

Myanmar MMR 1 1

Philippines PHL 3 3

Singapore SGP 1 1

Thailand THA 18 1 3 22

Vietnam VNM 5 4 9

unknown 4 3 7

Cluster total 28 102 67 11 208
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Figure 2.  Genetic structure across geography of the 208 M. indica accessions. Cluster numbers (K = 4) were 
determined using a hierarchical cluster analysis (Fig. 1). The size of each pie chart reflects the number of 
accessions imported from each country. The world map was created in “rworldmap” v1.3–6 R-package (https:// 
cran.r- proje ct. org/ web/ packa ges/ rworl dmap/).

Figure 3.  Genetic structure of 208 M. indica individuals using STRU CTU RE for K = 2 to K = 5. Each bar 
represents an individual with the shades of blue representing the ancestry proportions to each cluster. 
Individuals are sorted by geographical region (black lines), where Af = Africa, M = Middle East and 
U = unknown, and country (white dotted lines). Refer to Table 1 for information on each country code.

https://cran.r-project.org/web/packages/rworldmap/
https://cran.r-project.org/web/packages/rworldmap/
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blush intensity (Fig. S5;  F4,203 = 1.473, p = 0.2118,  R2 = 0.03), suggesting trunk circumference is likely to be geneti-
cally independent of these fruit traits.

Fruit blush traits are strongly associated with the region of import in the Australian mango gene pool. In single 
trait linear models, region of import showed a significant effect on fruit blush colour (Fig. 4a; LR χ2 = 77.768, 
df = 12, p < 0.0001,  R2 = 0.14) and fruit blush intensity (Fig. 4b; LR χ2 = 98.936, df = 3, p < 0.0001,  R2 = 0.18), but 
not trunk circumference  (F3,188 = 1.970, p = 0.1200,  R2 = 0.03). Of the regions that had more than ten samples, 
trunk circumference ranged from a mean of 48.1 ± 1.8 (n = 38) in South Asia to a mean of 52.5 ± 1.3 (n = 46) in 
the Americas (Table S1). For fruit blush colour (Table S2), 67% of accessions from Southeast Asia had no blush 
colour, while only 11% from the Americas had no blush, with most having red blush (43%). For fruit blush inten-
sity (Table S3), the Americas had 41% of accessions with a medium blush intensity that resembled the Haden 
accession. In comparison, Oceania had 39% of accessions with slight blush intensity resembling the Kensington 
Pride accession. Contrastingly, 94% of Southeast Asian accessions and 82% of South Asian accessions had no 
blush or barely visible blush intensity.

Fruit blush colour, intensity and trunk circumference were all associated with the four clusters assigned in 
the HCA. Cluster assignment had a significant effect on fruit blush colour (LR χ2 = 47.074, df = 12, p < 0.0001, 
 R2 = 0.08) and the presence of blush (LR χ2 = 28.046, df = 3, p < 0.0001,  R2 = 0.10), where 18% of individuals in 
cluster 1 had blush, whereas 70% and 69% of individuals from clusters 2 and 3 had blush, respectively. Cluster 1 
is more likely to have lower blush intensity than the other clusters when the ‘no blush’ category is excluded (LR 
χ2 = 12.274, df = 3, p = 0.0065,  R2 = 0.04; odds ratios between cluster 1 and clusters 2 to 4 ranged from 3.8 to 10.5). 
Finally, cluster had a significant effect on trunk circumference  (F3,204 = 18.410, p < 0.0001,  R2 = 0.21), where cluster 
1 (mean = 52.3 ± 1.5, n = 28) and cluster 2 (mean = 53.7 ± 0.8, n = 102) had the largest trunk circumference and 
cluster 4 had the smallest (mean = 36.8 ± 2.9, n = 11). Overall, we expect that genetic diversity and factors specific 
to the region of import will likely influence the genotype to phenotype map of these key mango traits.

Discussion
Genetic structure arises from evolutionary processes such as mutation, migration and genetic drift, which drive 
shifts in allelic frequency that could cause statistical associations between random genetic markers and  traits41. 
Such variation arising from genetic structure is often confounded with loci contributing to trait variation in 

Table 2.  Genetic diversity for 208 M. indica accessions across six geographic regions using 272 SNPs. HO, 
observed heterozygosity;  HE, expected heterozygosity;  FIS, inbreeding co-efficient with 95% confidence 
intervals, where *CI’s do not overlap with 0; Pr, the number of private alleles.

Region HO HE FIS (95% CI’s) Pr

Africa 0.46 0.45 − 0.02 (− 0.08 to 0.05) 0

Americas 0.49 0.44 − 0.11* (− 0.13 to − 0.08) 0

Middle East 0.46 0.45 − 0.01 (− 0.08 to 0.05) 0

Oceania 0.43 0.42 − 0.02 (− 0.05 to 0.00) 0

South Asia 0.45 0.45 0.00 (− 0.03 to 0.02) 0

Southeast Asia 0.39 0.42 0.08* (0.06 to 0.11) 0

Table 3.  Pairwise  FST for M. indica. a)  FST estimates for the geographical regions and b) clusters.  FST estimates 
are below the diagonal, 95% confidence interval above the diagonal are based on 1000 bootstrap replicates. 
Clusters (K = 4) were identified using hierarchical cluster analysis (Fig. 1). *95% confidence intervals do not 
overlap with 0.

Region Africa Americas Middle East Oceania South Asia Southeast Asia

a

Africa – − 0.012 to 0.004 − 0.036 to 0.005 0.022 to 0.055 0.010 to 0.035 0.062 to 0.095

Americas − 0.004 – − 0.008 to 0.012 0.051 to 0.070 0.036 to 0.053 0.092 to 0.121

Middle East − 0.016 0.002 – 0.059 to 0.099 0.009 to 0.036 0.088 to 0.134

Oceania 0.039* 0.060* 0.079* – 0.031 to 0.046 0.070 to 0.095

South Asia 0.022* 0.044* 0.022* 0.038* – 0.049 to 0.069

Southeast Asia 0.078* 0.107* 0.112* 0.082* 0.060* –

Cluster 1 2 3 4

b

1 – 0.151 to 0.191 0.135 to 0.174 0.250 to 0.322

2 0.171* – 0.043 to 0.059 0.127 to 0.170

3 0.153* 0.051* – 0.050 to 0.074

4 0.286* 0.148* 0.062* –
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association  studies17,18,19,20,21,23, which can misrepresent the genotype to phenotype map assumed in genomic 
selection models. Our study shows how genetic structure in M. indica can lead to statistical associations between 
genetic markers and three phenotypic traits measured in this study – trunk circumference, fruit blush colour 
and intensity. This suggests that the genetic architecture of these horticultural traits contains noise arising from 
the conflation of phenotypic and historical differences in the Australian mango gene pool. Such noise can create 
spurious associations that hinder the selection of new cultivars, so we recommend that future studies in mango 
breeding take this into consideration.

Genetic variability and divergence in the Australian mango gene pool can be understood in two ways. On 
the one hand, accessions imported from different regions are weakly differentiated. On the other hand, genetic 
clusters are strongly differentiated, implying the existence of clear genetic groups. Results described in Fig. 2 
reveal that genetic clusters are distributed across regions, implying that their genetic structure is shared across the 

Figure 4.  Fruit blush colour and intensity across geography of the 208 M. indica accessions. (a) Fruit blush 
colour is split into five categories. (b) Fruit blush intensity increases from no blush to strong blush on an 
ordinal scale, where the accessions in brackets best reflect the colour intensity. The size of each pie chart reflects 
the number of accessions imported from each country. The world map was created in “rworldmap” v1.3-6 
R-package (https:// cran.r- proje ct. org/ web/ packa ges/ rworl dmap/).

https://cran.r-project.org/web/packages/rworldmap/
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world. The net effect of this nested relationship between geographic region and genetic cluster is low  FST values 
amongst the regions yet high levels of  FST amongst genetic clusters. This relationship can be used to hypothesise 
the causes of genetic divergence in the Australian mango gene pool.

In our study, cluster 1 (containing only Southeast Asian countries) comprises the most genetically differenti-
ated accessions from across the world. Previous studies support this observation; Warschefsky and von  Wettberg31 
showed that accessions from Southeast Asia cluster together in a STRU CTU RE plot, and Dillon et al.32 reached a 
similar conclusion using genetic distance analyses of 254 mango accessions. Surprisingly, we did not find private 
alleles (exclusive alleles) to Southeast Asia, such as those found in Warschefsky and von  Wettberg31 (74 private 
alleles from a total of 364 SNPs; 20%). It is unclear what is driving this difference in the number of private alleles 
between the two studies. However, some of the factors that could be contributing to the variation in sampled 
loci include different cultivars, contrasting sequencing techniques (SNP chip vs. Restriction site associated DNA 
markers), different approaches for calling variants, and for filtering of the minor allele  frequency42,43. The genetic 
differentiation observed between Southeast Asia and the rest of the world might have been driven by regional 
cultural differences. For example, in Southeast Asia, mangoes are incorporated into savoury dishes, which might 
have led to the selection of immature mangoes that stay green while ripening and therefore lack  blush31. On the 
other hand, red blush is favoured around the  world44, likely accentuating genetic differentiation between acces-
sions from Southeast Asia and the rest of the world.

Artificial selection for these cultural preferences may have driven some of the genetic differentiation iden-
tified in the Australian mango gene pool. It is well accepted that selecting one trait can incidentally lead to 
the evolution of other traits through genetic  linkage45,46. The genetic architecture of selected traits will largely 
determine the extent of this correlated evolution. In this study, we show that fruit blush colour and intensity 
are highly correlated, which might imply a shared genetic architecture. Therefore, selection for either of these 
traits could partially drive the evolution of the other. For example, the evolution of low blush intensity, but not 
trunk circumference, might have arisen from selection of low levels of blush colour in Southeast Asia. Selection 
of polygenic traits and recruitment of pleiotropic genes can also affect levels of genetic differentiation across the 
genome. Selection for trunk circumference, which is a polygenic  trait47, might therefore drive changes in allelic 
frequencies across many loci. In contrast, fruit colour pigments and their levels, are often controlled by fewer loci 
in simpler biochemical  pathways48–50. In general, we expect genes controlling plant growth and  development51–53 
to be important drivers of genetic differentiation between accessions and merit further attention considering the 
influence of the genetic architecture of selected traits on population structure.

Polyembryony could have contributed to the origin of genetic differences between Southeast Asia and other 
accessions. Southeast Asian accessions are typically polyembryonic, where all but one (the zygotic embryo) of 
the multiple somatic embryos are genetically identical to the maternal parent. Polyembryony is likely to easily 
be maintained under moderate to strong selection as it is thought to be inherited through a single dominant 
 gene54,55. A high level of polyembryony can freeze the genetic diversity in a population, as instead of allow-
ing hybridisation and creating unique individuals through recombination, it propagates genetically identical 
 individuals56. Polyembryony can therefore create genetic bottlenecks if only a fraction of the original genetic 
diversity is propagated, consistent with the signature of inbreeding in Southeast Asian accessions we found in 
this study. Furthermore, previous studies have found genetic clustering of mango accessions according to their 
ability to produce polyembryonic  seed57,58. However, embryo type is conflated with geographic region in these 
studies, where Southeast Asian accessions dominate the polyembryony types. Therefore, without future work 
teasing apart the contribution of polyembryony and geographic region than we lack an understanding of the 
various causes of polyembryonic selection and inbreeding on the genetic diversity of tree crops.

Genetic diversity and partitioning of genetic structure influence prediction accuracy in genomic selection 
models across horticultural  crops16,24,26,59–61. For instance, increasing genetic diversity by using a variety of races 
or genetic clusters in the training and validation sets produced higher prediction accuracies in rice,  sorghum16 
and  wheat61. But genetic diversity is known to reduce prediction accuracy when estimation error is high, which 
occurs in small populations or when there is low marker  density61,62. By definition, using markers close to the 
causative variants will augment prediction accuracy during breeding; however, this is hard to achieve with low-
density genotyping techniques such as SNP chips and Genotyping by Sequencing. With sequencing that covers 
the entire genome (e.g., whole genome sequencing), factors influenced by linkage disequilibrium can be better 
controlled, such as finding markers in tight linkage with causative loci. As such, population size, marker density, 
the genetic structure of the population, and the genetic architecture of the chosen traits will play a significant 
role in the accuracy of genomic selection models.

To ameliorate the adverse effects of genetic structure in genomic selection models, there are two major 
approaches used across horticultural  crops16,24,26,59,61. The first approach includes principal components from 
genetic structure analyses as covariates in the  model63–66. However, this method can double-count genetic struc-
ture because some elements are included in the model through the genomic relationship  matrix67. Another com-
mon approach for accounting for genetic structure in genomic selection models is ensuring an equal contribu-
tion across genetic clusters in training and validation sets. This stratified sampling approach has been shown to 
increase prediction accuracy in  sorghum16 and maize, and could be an effective method in the Australian mango 
gene pool. In general, choosing the most accurate genomic selection model will largely depend on the breeding 
population’s genetic structure and the number of samples.

Conclusion
The results of this study reveal that a horticultural species spread across the world has a genetic structure that 
can create statistical associations between three key traits and genetic markers. To remove the effects of spurious 
markers, breeders should fully characterise the genetic structure of their breeding population. This will allow 
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them to incorporate sample stratification to improve the performance of genomic selection models. Together 
with best practices of genomic selection (e.g., whole genome sequencing and large population size), these con-
siderations can improve the genotype to phenotype map to assist in choosing individuals with accurate breeding 
values and help advance future parental selection. We hope our study encourages other horticultural breeding 
programs to follow similar methods.

Methods
Ethics statement. All plant material used in this research was sourced and collected from the Walkamin 
Research Station, Queensland (17.1341°S, 145.4271°E), where trees are held as a living collection. The Depart-
ment of Agriculture and Fisheries granted permission as stated in the National Tree Genomics Program – Pheno-
type Prediction project (AS17000) for use and collection of materials from mango trees from their government 
station. This study complies with relevant institutional, national, and international guidelines and legislation.

Accessions. A total of 208 M. indica accessions were used from the gene pool collection of the Australian 
Mango Breeding Program at Walkamin Research Station. These accessions were imported from 21 countries 
across six geographical regions and were grafted onto the uniform polyembryonic rootstock, Kensington Pride. 
See Table 1 for the complete list of countries and sample sizes.

Genotyping. To identify some of the genotypic diversity in the Australian mango gene pool, we used the 
genotypes from Kuhn et al.68. DNA isolation for these genotypes was described in Kuhn et al.69. Briefly, young 
leaf samples were collected from Walkamin Research Station and the glasshouse at Mareeba Research Facility, 
Queensland (17.0075°S, 145.4295°E). DNA was extracted using 20 mg of fresh sample with the Qiagen Plant 
DNeasy kit. SNP genotyping was performed on these DNA samples using the Fluidigm EP-1 platform with 384 
biallelic SNP markers. Finally, 272 SNP markers were selected for further analyses, where 236 markers belong 
to one of 20 linkage groups (7–20 markers per linkage group), and the location of the remaining 36 markers in 
the genome is  unknown68. Genotypically identical individuals across the 272 SNPs were consolidated, leaving 
208 mango accessions for the analyses. On average, 98% of the 272 SNPs used in this study were successfully 
genotyped in every accession.

Hierarchical cluster analysis. To examine the genotypic clustering of the mango accessions due to gen-
otypic similarity, we performed a hierarchical cluster analysis (HCA) of the 208  M. indica accessions. First, 
pairwise genetic distances between all accessions were calculated using the percentage method by the “ape” 
v5.3 R-package70. The HCA was conducted by “stats” v3.6.2 R-package with complete linkage clustering. This 
computes all pairwise dissimilarities between the accessions in a cluster and accessions in another cluster and 
considers the largest value of these dissimilarities as a distance between the two clusters. To assess the optimal 
number of clusters, we used the elbow  method71, which plots the total within-cluster sum of squares (WSS) 
against the number of clusters to show the ‘elbow’ where the WSS rate of decrease slows and indicates diminish-
ing returns with more  clusters72.

Principal components analysis. We assessed the major patterns of genetic similarity among the 208 
mango accessions in multivariate space using a principal components analysis (PCA) with 272 SNPs. Missing 
SNP data were imputed using the regularised iterative PCA algorithm with the “missMDA” v1.17 R-package73. 
The PCA was performed using the “stats” v3.6.2 R-package74. Ellipses were constructed for each of the four 
clusters in the HCA to identify the position of every individual in a cluster in multivariate space with 95% prob-
ability.

Structure analysis. We determined levels of admixture between all 208  M. indica accessions with  
STRU CTU RE v2.3.439. STRU CTU RE is a Bayesian Markov chain Monte Carlo (MCMC) program that assigns 
individuals into genetic clusters (K) based on their genotypes by assuming Hardy Weinberg equilibrium within 
a cluster. It gives each accession an admixture coefficient to depict the proportion of the genome originating 
from a particular K cluster. We ran the admixture model and the correlated allele frequency  model75 with ten 
independent runs of 100,000 burn-in and 100,000 MCMC iterations for K = 1 to K = 7. We visually inspected 
summary statistics of MCMC runs to ensure convergence of model parameters. Results were summarised and 
plotted in the “pophelper” v2.2.7 R-package76. The optimal K value (which represents the most likely number of 
sub-populations) was estimated by the Evanno  method40, which uses the second-order rate of change in the log 
probability of data between successive K values in the R-package  StructureSelector77. The optimal K value was 
also estimated using LnP(K), the mean log probability of the data. We also followed suggestions by Pritchard 
et al.78 and Lawson, et al.79 and plotted the lowest K values that capture the primary structure in the data.

Genetic diversity and genetic differentiation. To examine the level of differentiation between the clus-
ters and geographical regions, Weir and Cockerham’s pairwise  FST and 95% confidence intervals were estimated 
by “hierfstat” v0.4.22 R-package80. Each accession was assigned to a cluster based on the HCA, and each country 
of import was grouped into six geographic regions. We calculated 95% confidence intervals for each pairwise 
comparison using 1000 bootstrap replicates. Significance was determined by whether the confidence interval 
overlapped with 0.

Measures of genetic diversity were calculated for all 208 M. indica accessions for each of the six geographic 
regions. A genind object was created in “adegenet” v2.1.2 R-package81,82 for input into “hierfstat” v0.4.22 
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R-package80 to calculate observed heterozygosity  (Ho), expected heterozygosity  (HE) and the inbreeding coef-
ficient  (FIS). To determine whether  FIS was significantly different from 0, we calculated 95% confidence intervals 
for each pairwise comparison using 1,000 bootstrap replicates. The number of private alleles (Pr) was calculated 
with the “poppr” v2.8.6 R-package83,84.

Phenotyping. To capture some of the phenotypic diversity in the Australian mango gene pool, we meas-
ured three traits in all 208 mango accessions – trunk circumference, fruit blush colour and fruit blush intensity. 
Trunk circumference was used as a proxy for tree size, as it has been found to be a strong indicator of tree size in 
other tree  crops85–87. Trunk circumference was measured 10 cm above the graft when the trees were 9 years old 
at Walkamin Research Station. After maturity (> 5 years old), fruit blush colour and intensity were assessed once 
a year using ten ripe fruits from each mango accession for at least 2 years. Fruits were taken from the outside of 
the tree, where they are exposed to full sun and have well developed blush. Fruit blush included five categories: 
no blush, orange, pink, red and burgundy (Fig. S3a). Fruit blush intensity was recorded as five ordinal variables 
increasing in colour intensity (Fig. S3b), where the accessions in brackets best reflect the colour intensity: no 
blush, barely visible, slight (Kensington Pride), medium (Haden) and strong (Tommy Atkins).

The effect of region of import and genetic structure on phenotypic diversity. Tests of associa-
tion were undertaken to examine the relationship between traits. Chi-square likelihood ratios were used to test 
phenotypic association amongst the categorical traits of fruit blush and intensity. We then performed the same 
analysis with the ‘no blush’ category removed to test whether the association remains. A linear model was per-
formed to test for an association between trunk circumference and fruit blush colour, and also trunk circumfer-
ence and fruit blush intensity.

To understand the effect of region of import on both genotype and phenotype in the Australian mango gene 
pool, we tested its association with genetic structure and phenotypic diversity. We investigated the influence of 
geographic region on phenotypic diversity for three key mango phenotypes – trunk circumference, fruit blush 
colour and intensity. We performed a likelihood-ratio chi-square test for fruit blush colour (categorical) and 
intensity (ordinal) against the region of import and a linear model for trunk circumference. Region of import was 
the explanatory variable in each model and included the regions shown in Table 1, excluding unknown regions 
(n = 7) and regions with low samples sizes, including the Middle East (n = 4), and Africa (n = 5).

We then tested for an effect of genetic structure on the three phenotypes using the optimal cluster assign-
ment of K = 4 from the HCA. Likelihood-ratio chi-square tests were performed for whether cluster explained 
(1) fruit blush colour, and (2) the presence (n = 127) vs absence of blush (n = 81), irrespective of the intensity of 
blush. We then removed the individuals with no blush from the dataset to test whether there was a significant 
difference in fruit blush intensity between clusters for just the individuals with fruit blush using a likelihood-
ratio chi-square test with an odds ratio. Finally, we performed a mixed linear model to test the effect of cluster 
on trunk circumference. JMP v15.2.0 (SAS 2015) produced all statistical results reported here.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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