165 research outputs found

    Resilience and well-being among children of migrant parents in South-East Asia

    Get PDF
    There has been little systematic empirical research on the well-being of children in transnational households in South-East Asia—a major sending region for contract migrants. This study uses survey data collected in 2008 from children aged 9, 10 and 11 and their caregivers in Indonesia, the Philippines, and Vietnam (N=1,498). Results indicate that while children of migrant parents, especially migrant mothers, are less likely to be happy compared to children in non-migrant households, greater resilience in child well-being is associated with longer durations of maternal absence. There is no evidence for a direct parental migration effect on school enjoyment and performance. The analyses highlight the sensitivity of results to the dimension of child well-being measured and who makes the assessment.Publisher PDFPeer reviewe

    Gene expression in Leishmania is regulated predominantly by gene dosage

    Get PDF
    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. IMPORTANCE Leishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene dosage impact gene expression has not been formally investigated. Here we show that the predominant mechanism determining transcript abundance differences (>85%) in Leishmania tropica is that of gene dosage at the level of individual genes or chromosomal somy

    Potential of alternate wetting and drying irrigation practices for the mitigation of ghg emissions from rice fields: Two cases in central luzon (philippines)

    Get PDF
    Reducing methane (CH4_{4}) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH4_{4}) emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH4_{4}) and nitrous oxide (N2_{2})O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH4_{4}) emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH4_{4}) is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N2_{2})O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH4_{4}) emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH4_{4}) emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments

    Assessment of performance indices of selected gas turbine power plants in Nigeria

    Get PDF
    In this study, performance assessment of selected gas turbine power plants in Nigeria was evaluated using performance indices. The results of the study showed that for the period under review (2006–2010), the percentage shortfalls from the target energy in the selected power plants range from 26.33% to 86.61% as against the acceptable value of 5–10%. The capacity factor of the selected power plants varies from 16.88% to 73.67% as against the international value of 50–80%. The plant use factor varies from 45.89% to 97.03% and the utilization factor varies from 6.31% to 93.074% as against the international best practice of over 95%. From this result, it can be concluded that the generating units were underutilized. This is due to inadequate routine maintenance and equipment fault development. The analyses of reliability indicators revealed that the mean time between failures varies from 5.42 to 378.44 h, the mean time to repair varies from 18.3 to 153.88 h and the plant availability varies from 12.86% to 91.31% as against the Institute of Electrical and Electronics Engineers recommended standard of 99.9%. Evaluation of operating figures of the selected power plants revealed that starting reliability (SR) and operating reliability vary from 71.95% to 93.9% and 5.33% to 55%, respectively. The SR of the selected power plants is low in value compared with standard value of 99.9%. The statistical analysis carried out on plant availability revealed that at 95% confidence level; there is a significant difference in availability of the selected power plants. This indicates differences in their systems installation, operation and maintenance. The performance indicator developed to evaluate the performance indices for the selected stations can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plants have been suggested in this paper

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans

    From Victims of Trafficking to Freedom Fighters: Rethinking Migrant Domestic Workers in the Middle East

    Get PDF
    Throughout the Middle East migrant women are employed to work in people’s homes. While some experience good working relations with employers, others experience forms of abuse and labour coercion. This chapter evaluates critically different ways that system of unfree labour has been variously described and analysed as a form of ‘contract slavery’, ‘debt bondage’ and ‘trafficking’. It also shows how migrant women who describe themselves as ‘freelancers’ exit their original employer’s home both to escape that relation and in hopes of securing a better situation outside of the regular system of employment. Freelancing is more than simply a form of resistance. Rather, women who work as freelance migrant domestic workers challenge directly that state enforced control over their mobility and are on the vanguard of those migrants who are seeking through their own actions to effect social change

    Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    Get PDF
    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC

    Local Admixture of Amplified and Diversified Secreted Pathogenesis Determinants Shapes Mosaic \u3cem\u3eToxoplasma gondii\u3c/em\u3e Genomes

    Get PDF
    Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity

    Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    Get PDF
    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration
    corecore