27 research outputs found

    A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases

    Get PDF
    Cost-effective strategies for identifying amyloid-β (Aβ) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-Aβ immunotherapies for Alzheimer’s disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining Aβ-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE ε4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of Aβ-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF Aβ42/Aβ40 testing, whereas step 1 alone determined Aβ-status for low- and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting Aβ-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings

    Integrating knowledge on green infrastructure, health and well-being in ageing populations: principles for research and practice

    Get PDF
    Ageing and urbanisation pose significant challenges for public health and urban planning. Ageing populations are at particular risk from hazards arising from urbanisation processes, some of which are in turn exacerbated by climate change. One approach for mitigating the negative effects of urbanisation on ageing populations is the leveraging of the beneficial effects of urban green infrastructure as a public health intervention in the planning process. We assessed the potential of available theoretical frameworks to provide the context for such leverage. This involved active engagement with academics and practitioners specialising in ageing, green infrastructure and health and well-being through a knowledge-brokering approach. We concluded that an integrated and comprehensive framework on the socio-cultural-ecological determinants of health is lacking. To address this, we present a set of principles for overcoming challenges to knowledge integration when working at the intersection of green infrastructure, ageing, health and well-being. Our findings—and the co-production process used to generate them—have wider significance for trans-disciplinary research into the benefits of the natural environment to human health and well-being as well as other complex and interconnected topics associated with global grand challenges

    Association of Phosphorylated Tau Biomarkers With Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography

    Get PDF
    IMPORTANCE: The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles. OBJECTIVE: To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET). DESIGN, SETTING, AND PARTICIPANTS: This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded. EXPOSURES: Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay. MAIN OUTCOMES AND MEASURES: Associations between p-tau biomarkers with amyloid PET and tau PET. RESULTS: A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181 difference, 13%; 95% CI, 3%-22%; P = .006; p-tau217 difference, 11%; 95% CI, 3%-20%; P = .003; p-tau231 difference, 15%; 95% CI, 5%-22%; P < .001; p-tau235 difference, 9%; 95% CI, 1%-19%; P = .02) . These results were replicated with plasma p-tau181 (difference, 11%; 95% CI, 1%-22%; P = .02), p-tau217 (difference, 9%; 95% CI, 1%-19%; P = .02), p-tau231 (difference, 13%; 95% CI, 3%-24%; P = .009), and CSF p-tau181 (difference, 9%; 95% CI, 1%-21%; P = .02) in independent cohorts. CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    14-3-3 \upzeta /\updelta ζ / δ -reported early synaptic injury in Alzheimer’s disease is independently mediated by sTREM2

    No full text
    Abstract Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer’s disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ( \upzeta /\updelta ζ / δ ) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. Results 14-3-3 \upzeta /\updelta ζ / δ was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 \upzeta /\updelta ζ / δ correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. Conclusions Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation

    Association of Phosphorylated Tau Biomarkers with Amyloid Positron Emission Tomography vs Tau Positron Emission Tomography

    Get PDF
    Importance: The recent proliferation of phosphorylated tau (p-tau) biomarkers has raised questions about their preferential association with the hallmark pathologies of Alzheimer disease (AD): amyloid-β plaques and tau neurofibrillary tangles. Objective: To determine whether cerebrospinal fluid (CSF) and plasma p-tau biomarkers preferentially reflect cerebral β-amyloidosis or neurofibrillary tangle aggregation measured with positron emission tomography (PET). Design, Setting, and Participants: This was a cross-sectional study of 2 observational cohorts: the Translational Biomarkers in Aging and Dementia (TRIAD) study, with data collected between October 2017 and August 2021, and the Alzheimer's Disease Neuroimaging Initiative (ADNI), with data collected between September 2015 and November 2019. TRIAD was a single-center study, and ADNI was a multicenter study. Two independent subsamples were derived from TRIAD. The first TRIAD subsample comprised individuals assessed with CSF p-tau (p-tau181, p-tau217, p-tau231, p-tau235), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. The second TRIAD subsample included individuals assessed with plasma p-tau (p-tau181, p-tau217, p-tau231), [18F]AZD4694 amyloid PET, and [18F]MK6240 tau PET. An independent cohort from ADNI comprised individuals assessed with CSF p-tau181, [18F]florbetapir PET, and [18F]flortaucipir PET. Participants were included based on the availability of p-tau and PET biomarker assessments collected within 9 months of each other. Exclusion criteria were a history of head trauma or magnetic resonance imaging/PET safety contraindications. No participants who met eligibility criteria were excluded. Exposures: Amyloid PET, tau PET, and CSF and plasma assessments of p-tau measured with single molecule array (Simoa) assay or enzyme-linked immunosorbent assay. Main Outcomes and Measures: Associations between p-tau biomarkers with amyloid PET and tau PET. Results: A total of 609 participants (mean [SD] age, 66.9 [13.6] years; 347 female [57%]; 262 male [43%]) were included in the study. For all 4 phosphorylation sites assessed in CSF, p-tau was significantly more closely associated with amyloid-PET values than tau-PET values (p-tau181difference, 13%; 95% CI, 3%-22%; P =.006; p-tau217difference, 11%; 95% CI, 3%-20%; P =.003; p-tau231difference, 15%; 95% CI, 5%-22%; P <.001; p-tau235difference, 9%; 95% CI, 1%-19%; P =.02). These results were replicated with plasma p-tau181(difference, 11%; 95% CI, 1%-22%; P =.02), p-tau217(difference, 9%; 95% CI, 1%-19%; P =.02), p-tau231(difference, 13%; 95% CI, 3%-24%; P =.009), and CSF p-tau181(difference, 9%; 95% CI, 1%-21%; P =.02) in independent cohorts. Conclusions and Relevance: Results of this cross-sectional study of 2 observational cohorts suggest that the p-tau abnormality as an early event in AD pathogenesis was associated with amyloid-β accumulation and highlights the need for careful interpretation of p-tau biomarkers in the context of the amyloid/tau/neurodegeneration, or A/T/(N), framework

    Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals

    No full text
    INTRODUCTION: Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-β (Aβ) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aβ and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS: We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aβ42/40, GFAP and Aβ- and tau-PET. RESULTS: In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aβ-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aβ-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION: Our results support plasma p-tau231 and p-tau217+ as state markers of early Aβ deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS: It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aβ pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aβ deposition and tau pathology

    APOEε4 potentiates amyloid β effects on longitudinal tau pathology

    No full text
    The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-β (Aβ) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aβ ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aβ effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aβ effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aβ downstream effects on the aggregation of phosphorylated tau in the living human brain
    corecore