36 research outputs found

    Loop Quantum Cosmology: A cosmological theory with a view

    Get PDF
    Loop Quantum Gravity is a background independent, nonperturbative approach to the quantization of General Relativity. Its application to models of interest in cosmology and astrophysics, known as Loop Quantum Cosmology, has led to new and exciting views of the gravitational phenomena that took place in the early universe, or that occur in spacetime regions where Einstein's theory predicts singularities. We provide a brief introduction to the bases of Loop Quantum Cosmology and summarize the most important results obtained in homogeneous scenarios. These results include a mechanism to avoid the cosmological Big Bang singularity and replace it with a Big Bounce, as well as the existence of processes which favor inflation. We also discuss the extension of the frame of Loop Quantum Cosmology to inhomogeneous settings.Comment: 17 pages, to appear in Proceedings of Spanish Relativity Meeting 2010 (ERE 2010) held in Granada, Spai

    Universe from vacuum in loop-string cosmology

    Full text link
    In this paper we study the description of the Universe based on the low energy superstring theory modified by the Loop Quantum Gravity effects.This approach was proposed by De Risi et al. in the Phys. Rev. D {\bf 76} (2007) 103531. We show that in the contrast with the string motivated pre-Big Bang scenario, the cosmological realisation of the tt-duality transformation is not necessary to avoid an initial singularity. In the model considered the universe starts its evolution in the vacuum phase at time tt\to - \infty. In this phase the scale factor a0a\to 0, energy density ρ0\rho \to 0 and coupling of the interactions gs20g^2_s \to 0. After this stage the universe evolves to the non-singular hot Big Bang phase ρρmax<\rho \to \rho_{\text{max}} < \infty. Then the standard classical universe emerges. During the whole evolution the scale factor increases monotonically. We solve this model analytically. We also propose and solve numerically the model with an additional dilaton potential in which the universe starts the evolution from the asymptotically free vacuum phase gs20g^2_s \to 0 and then evolves non-singularly to the emerging dark energy dominated phase with the saturated coupling constant gs2constg^2_s \to \text{const}.Comment: JHEP3 LaTeX class, 19 pages, 9 figures, v2: added some comments and references, v3: new numerical result added, new figure

    Numerical loop quantum cosmology: an overview

    Get PDF
    A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and Quantum Gravity special issue on Non-Astrophysical Numerical Relativit

    The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology

    Full text link
    This letter is motivated by the recent papers by Dittrich and Thiemann and, respectively, by Rovelli discussing the status of Quantum Geometry in the dynamical sector of Loop Quantum Gravity. Since the papers consider model examples, we also study the issue in the case of an example, namely on the Loop Quantum Cosmology model of space-isotropic universe. We derive the Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum geometry operators of LQC in both Hilbert spaces: the kinematical one and, respectively, the physical Hilbert space of solutions to the quantum constraints. We find, that Quantum Geometry can be used to characterize the physical solutions, and the operators of quantum geometry preserve many of their kinematical properties.Comment: Latex, 12 page

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    Inverse volume corrections to emergent tachyonic inflation in loop quantum cosmology

    Full text link
    The emergent model in the context of loop quantum cosmology with a tachyon scalar field is studied. We find that there is a center equilibrium point in the semiclassical region and a saddle point in the classical region. If the potential of the tachyon field satisfies some conditions, the universe can stay at the center equilibrium point past-eternally and then oscillate infinitely around this point with the tachyon climbing up its potential. Once the potential reaches a critical value, these two equilibrium points coincide with each other and the oscillation phase is broken by an emergent inflation. In order to obtain a successful emergent tachyon inflation, a constraint on ϕ˙2\dot{\phi}^2 of tachyon is required.Comment: 13 pages, 5 figures, a reference adde

    Semiclassical States in Quantum Cosmology: Bianchi I Coherent States

    Full text link
    We study coherent states for Bianchi type I cosmological models, as examples of semiclassical states for time-reparametrization invariant systems. This simple model allows us to study explicitly the relationship between exact semiclassical states in the kinematical Hilbert space and corresponding ones in the physical Hilbert space, which we construct here using the group averaging technique. We find that it is possible to construct good semiclassical physical states by such a procedure in this model; we also discuss the sense in which the original kinematical states may be a good approximation to the physical ones, and the situations in which this is the case. In addition, these models can be deparametrized in a natural way, and we study the effect of time evolution on an "intrinsic" coherent state in the reduced phase space, in order to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion has been slightly reorganized, two references added, and some typos correcte
    corecore