75 research outputs found

    A Short Study Exploring the Effect of the Glycaemic Index of the Diet on Energy intake and Salivary Steroid Hormones

    Get PDF
    From PubMed via Jisc Publications RouterThe glycaemic index or load (GI or GL) is a concept for ranking carbohydrate-rich foods based on the postprandial blood glucose response compared with a reference food (glucose). Due to the limited research investigating the effect of the GI or GL of the diet on salivary steroidal hormones, this explorative short study was conducted. 12 female participants consumed a low GI and a high GI diet for three days each, followed by a washout period between each intervention. Saliva was collected at baseline, and following the low or high GI diets. Cortisol and testosterone concentrations were measured by enzyme-linked immuno-sorbent assay (ELISA). GI and GL were significantly different between the low and high GI diets ( < 0.001). There was a small but significant increase in salivary cortisol after the high GI diet (7.38 to 10.93 ng/mL, = 0.036). No effect was observed after the low GI diet. Higher levels of testosterone were produced after the low GI diet (83.7 to 125.9 pg/mL, = 0.002), and no effect was found after the high GI diet. The total intake of calories consumed on the low GI diet was significantly lower compared to the high GI diet ( = 0.019). A low GI diet was associated with a small but significant increase in salivary testosterone, while a high GI diet increased cortisol levels. Altering the GI of the diet may influence overall energy intake and the health and wellbeing of female volunteers.11pubpub

    Reforming South Africa’s procedures for granting patents to improve medicine access

    Get PDF
    Adopting stricter patentability criteria, and implementing patent examination in SA, would significantly reduce the number of patents granted. Granting fewer patents will, in turn, facilitate generic competition, lower medicine prices, and ensure increased access to medicines for individuals who are currently unable to afford the treatments that they need, and for the government in its procurement of medicines for the public sector.

    A 3 year longitudinal prospective review examining the dietary profile and contribution made by special low protein foods to energy and macronutrient intake in children with phenylketonuria

    Get PDF
    The nutritional composition of special low protein foods (SLPFs) is controlled under EU legislation for ‘Foods for Special Medical Purposes (FSMP)’. They are designed to meet the energy needs of patients unable to eat a normal protein containing diet. In phenylketonuria (PKU), the macronutrient contribution of SLPFs has been inadequately examined. Aim: A 3-year longitudinal prospective study investigating the contribution of SLPFs to the macronutrient intake of children with early treated PKU. Methods: 48 children (27 boys) with a mean recruitment age of 9.3 y were studied. Semi-quantitative dietary assessments and food frequency questionnaires (FFQ) were collected three to four times/year for 3 years. Results: The mean energy intake provided by SLPFs was 33% (SD ± 8), and this figure was 42% (SD ± 13) for normal food and 21% (SD ± 5) for protein substitutes (PS). SLPFs supplied a mean intake of 40% carbohydrate (SD ± 10), 51% starch (SD ± 18), 21% sugar (SD ± 8), and 38% fat (SD ± 13). Fibre intake met 83% of the Scientific Advisory Committee on Nutrition (SACN) reference value, with 50% coming from SLPFs with added gums and hydrocolloids. Low protein bread, pasta and milk provided the highest energy contribution, and the intake of sweet SLPFs (e.g., biscuits, cakes, and chocolate) was minimal. Children averaged three portions fruit/vegetable daily, and children aged ≄ 12 y had irregular meal patterns. Conclusion: SLPFs provide essential energy in phenylalanine restricted diets. Optimising the nutritional quality of SLPFs deserves more attention.publishersversionpublishe

    Insulin-signalling dysregulation and inflammation is programmed trans-generationally in a female rat model of poor maternal nutrition.

    Get PDF
    Developmental programming phenotypes can be recapitulated in subsequent generations not directly exposed to the initial suboptimal intrauterine environment. A maternal low-protein diet during pregnancy and postnatal catch-up growth ('recuperated') alters insulin signaling and inflammation in rat offspring (F1-generation). We aimed to establish if this phenotype is also present in F2-generation females. Insulin-receptor-substrate-1 protein expression was decreased in para-ovarian adipose tissue at 3 months in offspring exposed to a grand-maternal low-protein diet (F2-recuperated), vs. F2-control animals (p < 0.05). There was no effect of grand-maternal diet upon Insulin-receptor-substrate-1 mRNA. Protein-kinase C-zeta protein levels were increased at 3 and 6 months in F2-recuperated animals (p < 0.01 at both ages). Phosphorylated-Aktser473 levels were decreased in F2-recuperated animals (p < 0.001). Interleukin-1ÎČ protein levels were increased at 3 (p < 0.01) and (p < 0.001) 6 months in F2-recuperated animals. Vastus-lateralis insulin-receptor-ÎČ protein expression (p < 0.001) and pAktser473 (p < 0.01) were increased at 3 months in F2-recuperated animals compared to controls. At 6 months, PAktser473 was lower in F2-recuperated animals (p < 0.001). Aspects of insulin signalling dysregulation and inflammation present in offspring of low-protein fed dams can be transmitted to subsequent generations without further exposure to a suboptimal maternal diet. These findings contribute to our understanding of insulin-resistance in grandchildren of sub-optimally nourished individuals during pregnancy

    The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria

    Get PDF
    Protein is the most satiating macronutrient, increasing secretion of gastrointestinal hormones and diet induced thermogenesis. In phenylketonuria (PKU), natural protein is restricted with approximately 80% of intake supplied by a synthetic protein source, which may alter satiety response. Casein glycomacropeptide (CGMP-AA), a carbohydrate containing peptide and alternative protein substitute to amino acids (AA), may enhance satiety mediated by its bioactive properties. AIM: In a three-year longitudinal; prospective study, the effect of AA and two different amounts of CGMP-AA (CGMP-AA only (CGMP100) and a combination of CGMP-AA and AA (CGMP50) on satiety, weight and body mass index (BMI) were compared. METHODS: 48 children with PKU completed the study. Median ages of children were: CGMP100; (n = 13), 9.2 years; CGMP50; (n = 16), 7.3 years; and AA (n = 19), 11.1 years. Semi-quantitative dietary assessments and anthropometry (weight, height and BMI) were measured every three months. RESULTS: The macronutrient contribution to total energy intake from protein, carbohydrate and fat was similar across the groups. Adjusting for age and gender, no differences in energy intake, weight, BMI, incidence of overweight or obesity was apparent between the groups. CONCLUSION: In this three-year longitudinal study, there was no indication to support a relationship between CGMP and satiety, as evidenced by decreased energy intake, thereby preventing overweight or obesity. Satiety is a complex multi-system process that is not fully understood.publishersversionpublishe

    Investigation of paediatric PKU breath malodour, comparing glycomacropeptide with phenylalanine free L-amino acid supplements

    Get PDF
    In clinical practice, caregivers of children with phenylketonuria (PKU) report that their children have breath malodour. This might be linked to the regular consumption of low phenylalanine (Phe)/Phe-free protein substitutes (PS), which are an essential component of a low-Phe diet. Oral malodour can negatively affect interpersonal communication, lead to bullying, low self-esteem and social isolation. In this longitudinal cross-over study, exhaled volatile organic compounds (VOCs) were measured using gas chromatography - ion mobility spectrometry (GC-IMS). 40 children (20 PKU, 20 controls) were recruited. Subjects with PKU took either L-Amino Acid (L-AA) or Casein Glycomacropeptide (CGMP-AA) exclusively for 1 week, in a randomised order. On the 7th day, 7 exhaled breath samples were collected over a 10-hr period. Subjects then transferred to the other PS for a week and on day 7, provided 7 further breath samples. All subjects had a standardised menu using low-Phe food alternatives and all food intake was measured and recorded. In the PKU group, the aim was to collect samples 30-min after consuming PS. In 3 subjects, breath was collected 5-min post-PS consumption. Fasted L-AA and CGMP-AA breath samples contained a similar number of VOC peaks (10-12) as controls. Longitudinal breath testing results demonstrate that there was no significant difference in the number of exhaled VOCs, comparing L-AA or CGMP-AA with controls, or between PS (12-18 VOC peaks). Breath analysed immediately after consumption of PS (n=3) showed an immediate increase in the number of VOC peaks (25-30), but these were no longer detectable at 30-min post-consumption. This suggests PS have a transient effect on exhaled breath. Measurements taken 30-min after consuming L-AA or CGMP-AA were not significantly different to controls. This indicates that timing food and drinks with PS consumption may be a potential solution for carers to reduce or eliminate unpleasant PS-related breath odours. [Abstract copyright: © 2019 IOP Publishing Ltd.

    A 6 Month Follow-Up Report

    Get PDF
    Funding Information: M.I.G. has received a Recordati Rare Disease Grant Ed. 2021–2022 from the Portuguese Society of Metabolic Diseases (SPDM) to develop this work in the worth of 3000€. Funding Information: M.I.G. has received travelling grants from Cambrooke Therapeutics and Nutricia to attend scientific meetings. A.D. received research funding from Vitaflo International, financial support from Nutricia, Mevalia and Vitaflo International to attend study days and conferences. J.C.R. was a member of the European Nutritionist ExpertPanel (Biomarin), the Advisory Board for Applied Pharma Research, Vitaflo, Synlogic, Biomarin and Nutricia, and received honoraria as a speaker from APR, Merck Serono, Biomarin, Nutricia, Vitaflo, Cambrooke, PIAM and Lifediet. S.E. received research funding from Nutricia, and financial support from Nutricia and Vitaflo International to attend study days and conferences. C.A. received honoraria from Nutricia and Vitaflo International to attend study days and conferences. A.M. has received research funding and honoraria from Nutricia, Vitaflo International, and Biomarin. She is a Member of the Advisory Board Element (Danone-Nutricia). The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Publisher Copyright: © 2023 by the authors.Introduction: In phenylketonuria (PKU) changes in dietary patterns and behaviors in sapropterin-responsive populations have not been widely reported. We aimed to assess changes in food quality, mental health and burden of care in a paediatric PKU sapropterin-responsive cohort. Methods: In an observational, longitudinal study, patient questionnaires on food frequency, neophobia, anxiety and depression, impact on family and burden of care were applied at baseline, 3 and 6-months post successful sapropterin-responsiveness testing (defined as a 30% reduction in blood phenylalanine levels). Results: 17 children (10.8 ± 4.2 years) completed 6-months follow-up. Patients body mass index (BMI) z-scores remained unchanged after sapropterin initiation. Blood phenylalanine was stable. Natural protein increased (p < 0.001) and protein substitute intake decreased (p = 0.002). There were increases in regular cow’s milk (p = 0.001), meat/fish, eggs (p = 0.005), bread (p = 0.01) and pasta (p = 0.011) intakes but special low-protein foods intake decreased. Anxiety (p = 0.016) and depression (p = 0.022) decreased in caregivers. The impact-on-family, familial-social impact (p = 0.002) and personal strain (p = 0.001) lessened. After sapropterin, caregivers spent less time on PKU tasks, the majority ate meals outside the home more regularly and fewer caregivers had to deny food choices to their children. Conclusion: There were significant positive changes in food patterns, behaviors and burden of care in children with PKU and their families after 6-months on sapropterin treatment.publishersversionpublishe

    Protein labelling accuracy for uk patients with pku following a low protein diet

    Get PDF
    A phenylalanine (protein)-restricted diet is the primary treatment for phenylketonuria (PKU). Patients are dependent on food protein labelling to successfully manage their condition. We evaluated the accuracy of protein labelling on packaged manufactured foods from supermarket websites for foods that may be eaten as part of a phenylalanine-restricted diet. Protein labelling information was evaluated for 462 food items (“free from”, n = 159, regular, n = 303), divided into 16 food groups using supermarket website data. Data collection included protein content per portion/100 g when food was “as sold”, “cooked” or “prepared”; cooking methods, and preparation instructions. Labelling errors affecting protein content were observed in every food group, with overall protein labelling unclear in 55% (n = 255/462) of foods. There was misleading, omitted, or erroneous (MOE) information in 43% (n = 68/159) of “free from” foods compared with 62% (n = 187/303) of regular foods, with fewer inaccuracies in “free from” food labelling (p = 0.007). Protein analysis was available for uncooked weight only but not cooked weight for 58% (n = 85/146) of foods; 4% (n = 17/462) had misleading protein content. There was a high rate of incomplete, misleading, or inaccurate data affecting the interpretation of the protein content of food items on supermarket websites. This could adversely affect metabolic control of patients with PKU and warrants serious consideration.publishersversionpublishe

    Maternal Metformin Intervention during Obese Glucose-Intolerant Pregnancy Affects Adiposity in Young Adult Mouse Offspring in a Sex-Specific Manner.

    Get PDF
    BackgroundMetformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring.MethodsC57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR.ResultsGestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p p p F4/80 (p ConclusionsMaternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT
    • 

    corecore