16 research outputs found

    Hierarchical Metal‐Organic Network‐Forming Glasses toward Applications

    Get PDF
    Glassy states of network-forming coordination polymers (CPs) and metal-organic frameworks (MOFs) represent a novel category of amorphous materials. Recent years have seen substantial progress in expanding the compound library and advancing the structural design of CP/MOF glasses. This review examines the current status and future potential of multi-scale hierarchical CP/MOF glass materials, covering synthesis, shape adaptability, and synergistic materials. Extensive experimental and theoretical investigations of structure-property relationships have shed light on their diverse utility, spanning areas such as permanent porosity and gas permeability, ionic and electronic conductivity, optics, catalysis, and battery technology. Additionally, the inherent properties of these glasses, coupled with their phase transformation capability, enable a range of morphological architectures. Current challenges are also addressed and offer insights into future research, with the goal of bringing CP/MOF glasses to the industry

    Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes

    Get PDF
    Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal–organic framework (MOF) crystal–glass composite material. Domains <100 nm in size are observed using vibrational EELS, with recorded spatial resolution <15 nm at interfaces in the composite. This nanoscale functional group mapping is confirmed by correlated EELS at core ionization edges as well as X-ray energy dispersive spectroscopy for elemental mapping of the metal centers of the two constituent MOFs. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal–organic solids

    Metal-organic framework crystal-glass composites.

    Get PDF
    The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and chemical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix. Whilst separated phases, the interfacial interactions between the closely contacted microdomains improve the mechanical properties of the composite glass. More significantly, the high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-glass composite. This leads to a significant improvement of CO2 adsorption capacity

    Liquid phase blending of metal-organic frameworks.

    Get PDF
    The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and Tg investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys

    Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility

    Get PDF
    Iron(III) fumarate materials are well suited for biomedical applications as they feature biocompatible building blocks, porosity, chemical functionalizability, and magnetic resonance imaging (MRI) activity. The synthesis of these materials however is difficult to control, and it has been challenging to produce monodisperse particle sizes and morphologies that are required in medical use. Here, we report the optimization of iron(III) fumarate nano- and microparticle synthesis by surfactant-free methods, including room temperature, solvothermal, microwave, and microfluidic conditions. Four variants of iron(III) fumarate with distinct morphologies were isolated and are characterized in detail. Structural characterization shows that all iron(III) fumarate variants exhibit the metal–organic framework (MOF) structure of MIL-88A. Nanoparticles with a diameter of 50 nm were produced, which contain crystalline areas not exceeding 5 nm. Solvent-dependent swelling of the crystalline particles was monitored using in situ X-ray diffraction. Cytotoxicity experiments showed that all iron(III) fumarate variants feature adequate biotolerability and no distinct interference with cellular metabolism at low concentrations. Magnetic resonance relaxivity studies using clinical MRI equipment, on the other hand, proved that the MRI contrast characteristics depend on particle size and morphology. All in all, this study demonstrates the possibility of tuning the morphological appearance of iron(III) fumarate particles and illustrates the importance of optimizing synthesis conditions for the development of new biomedical materials

    Thermal Expansion of Metal-Organic Framework Crystal-Glass Composites.

    No full text
    Metal-organic framework crystal-glass composites (MOF CGCs) are a class of materials comprising a crystalline framework embedded within a MOF glass matrix. Herein, we investigate the thermal expansion behavior of three MOF CGCs, incorporating two flexible (MIL-53(Al) and MIL-118) and one rigid (UL-MOF-1) MOF within a ZIF-62 glass matrix. Specifically, variable-temperature powder X-ray diffraction data and thermomechanical analysis show the suppression of thermal expansivity in each of these three crystalline MOFs when suspended within a ZIF-62 glass matrix. In particular, for the two flexible frameworks, the average volumetric thermal expansion (β) was found to be near-zero in the crystal-glass composite. These results provide a route to engineering thermal expansivity in stimuli-responsive MOF glass composites

    Gas Adsorption Selectivity in Topologically Disordered Metal–Organic Frameworks

    No full text
    Disordered metal–organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL‑100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range of industrial gases, noble gases and hydrocarbons. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL‑100. Most notably, we observe striking discrimination between the adsorption of C3H6 and C3H8 in Fe‑BTC, with over a twofold increase in the amount of C3H6 being adsorbed than C3H8. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory (IAST). Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.</div

    Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites

    No full text
    Metal-organic frameworks (MOFs) are often, and incorrectly, believed to be purely crystalline solids. This Feature Article highlights a selection of highly disordered MOF-based materials. This disorder gives rise to numerous possibilities in the fabrication of new MOF materials, and presents an alternative method of novel materials discovery, outside of the synthesis of increasingly complex crystalline structures. The formation of liquid MOFs and resultant melt-quenched glasses is reviewed, along with several categories of novel MOF-based materials including blends, flux melted glasses and crystal-glass composites
    corecore