6,456 research outputs found

    Feature weighting techniques for CBR in software effort estimation studies: A review and empirical evaluation

    Get PDF
    Context : Software effort estimation is one of the most important activities in the software development process. Unfortunately, estimates are often substantially wrong. Numerous estimation methods have been proposed including Case-based Reasoning (CBR). In order to improve CBR estimation accuracy, many researchers have proposed feature weighting techniques (FWT). Objective: Our purpose is to systematically review the empirical evidence to determine whether FWT leads to improved predictions. In addition we evaluate these techniques from the perspectives of (i) approach (ii) strengths and weaknesses (iii) performance and (iv) experimental evaluation approach including the data sets used. Method: We conducted a systematic literature review of published, refereed primary studies on FWT (2000-2014). Results: We identified 19 relevant primary studies. These reported a range of different techniques. 17 out of 19 make benchmark comparisons with standard CBR and 16 out of 17 studies report improved accuracy. Using a one-sample sign test this positive impact is significant (p = 0:0003). Conclusion: The actionable conclusion from this study is that our review of all relevant empirical evidence supports the use of FWTs and we recommend that researchers and practitioners give serious consideration to their adoption

    The effects of classic and variant infectious bursal disease viruses on lymphocyte populations in specific-pathogen-free White Leghorn chickens

    Get PDF
    Infectious bursal disease virus (IBDV) is a pathogen that primarily infects B lymphocytes in domestic avian species. This viral infection has been associated with immunosuppression, clinical disease/mortality, and enteric malabsorption effects. The purpose of this experiment was to compare the effects of a classic (USDA-STC) and a new variant IBDV (RB-4, known to induce primarily the enteric disease) on immune cell populations in lymphoid organs. Seventeen-dayold specific-pathogen-free (SPF) White Leghorn chickens were either not infected (control) or inoculated with either USDA-STC or RB-4 IBD viral isolate. On days 3 and 5 post-inoculation (PI), lymphoid tissues were collected to prepare cell suspensions for immunofluorescent staining and cell population analysis by flow cytometry. Portions of the tissues were snap frozen for immunohistochemistry to localize various immune cells and IBD virus in the tissues. Tissue homogenates were prepared to test for IBDV by quantitative MTT assay. Both the USDA-STC and RB-4 viruses greatly altered lymphocyte populations in the spleen and bursa. At 5 d PI, bursal B cells were approximately 25% and 60% of lymphocytes in chicks infected with USDA-STC and RB-4, respectively, whereas in control birds, B cells constituted 99% of bursal lymphocytes. This reduction in the proportions of bursal B cells was associated with an infiltration of T cells. In the spleen, IBDV infection also reduced the percentage of B cells and increased the percentage of T cells. The differential effects of classic and variant IBDV infection on immune cell populations in lymphoid organs may explain the differences in clinical effects induced by these viruse

    Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    Get PDF
    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil

    Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    Get PDF
    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes

    The first high-amplitude delta Scuti star in an eclipsing binary system

    Full text link
    We report the discovery of the first high-amplitude delta Scuti star in an eclipsing binary, which we have designated UNSW-V-500. The system is an Algol-type semi-detached eclipsing binary of maximum brightness V = 12.52 mag. A best-fitting solution to the binary light curve and two radial velocity curves is derived using the Wilson-Devinney code. We identify a late A spectral type primary component of mass 1.49+/-0.02 M_sun and a late K spectral type secondary of mass 0.33+/-0.02 M_sun, with an inclination of 86.5+/-1.0 degrees, and a period of 5.3504751+/-0.0000006 d. A Fourier analysis of the residuals from this solution is performed using PERIOD04 to investigate the delta Scuti pulsations. We detect a single pulsation frequency of f_1 = 13.621+/-0.015 c/d, and it appears this is the first overtone radial mode frequency. This system provides the first opportunity to measure the dynamical mass for a star of this variable type; previously, masses have been derived from stellar evolution and pulsation models.Comment: 7 pages, 6 figures, 2 tables, for submission to MNRAS, v2: paper size change, small typographical changes to abstrac

    Exploring service providers’ perceptions of the barriers and enablers to recruitment of service users into social prescribing research

    Get PDF
    \ua9 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Objective: To explore the views of social prescribing service providers on the barriers and enablers to recruitment of service users in social prescribing research. Design: A qualitative study design, using semi-structured interviews with social prescribing service providers in the voluntary, community, faith, and social enterprise sector. Data were analysed using Thematic Framework Analysis. Results: Ten interviews were conducted with service providers from five different social prescribing services. Three analytical themes were created. (1) What are you talking about?, related to service provider experiences of attempting to engage service users in social prescribing research, specifically confusion about the term social prescribing. (2) You’ve got a friend in me, focused on the positive impact of quality relationships between service providers and service users on recruitment. (3) No, no, no. Not today, reflected the experiences of service providers who reported that service users will often experience fluctuations in their mental and physical health, limiting their capacity to engage with structured research activity. Conclusions: Key implications arising from this study is a need for more accessible and person-centred strategies for strengthening recruitment to, and participation in, social prescribing research. Increasing accessibility of research language (and information about participation), providing flexibility in recruitment methods, and conduct of research can also improve recruitment and retention. Service providers are vital for supporting engagement of service users in social prescribing research

    Accuracy threshold for concatenated error detection in one dimension

    Full text link
    Estimates of the quantum accuracy threshold often tacitly assume that it is possible to interact arbitrary pairs of qubits in a quantum computer with a failure rate that is independent of the distance between them. None of the many physical systems that are candidates for quantum computing possess this property. Here we study the performance of a concatenated error-detection code in a system that permits only nearest-neighbor interactions in one dimension. We make use of a new message-passing scheme that maximizes the number of errors that can be reliably corrected by the code. Our numerical results indicate that arbitrarily accurate universal quantum computation is possible if the probability of failure of each elementary physical operation is below approximately 10^{-5}. This threshold is three orders of magnitude lower than the highest known.Comment: 7 pages, 4 figures, now with error bar

    Metacarpophalangeal pattern profile analysis of a sample drawn from a North Wales population

    Get PDF
    This is tha author's PDF version of an article published in Annals of human biology© 2001. The definitive version is available at http://www.tandf.co.uk/journalsSexual dimorphism and population differences were investigated using metacarpophalangeal pattern profile (MCPP) analysis. Although it is an anthropmetric technique, MCPP analysis is more frequently used in genetic syndrome analysis and has been under-used in the study of human groups. The present analysis used a series of hand radiographics from Gwynedd, North Wales, to make comparisons, first, between the sexes within the sample and then with previously reported data from Japan. The Welsh sexes showed MCPP analyses that indicated size and shape differences but certain similarities in shape were also evident. Differences with the Japanese data were more marked. MCPP anlysis is a potentially useful anthropmetric technique but requires further statistical development
    • …
    corecore