13 research outputs found

    Use of Machine Learning for Early Detection of Knee Osteoarthritis and Quantifying Effectiveness of Treatment Using Force Platform

    Get PDF
    Knee osteoarthritis is one of the most prevalent chronic diseases. It leads to pain, stiffness, decreased participation in activities of daily living and problems with balance recognition. Force platforms have been one of the tools used to analyse balance in patients. However, identification in early stages and assessing the severity of osteoarthritis using parameters derived from a force plate are yet unexplored to the best of our knowledge. Combining artificial intelligence with medical knowledge can provide a faster and more accurate diagnosis. The aim of our study is to present a novel algorithm to classify the occurrence and severity of knee osteoarthritis based on the parameters derived from a force plate. Forty-four sway movements graphs were measured. The different machine learning algorithms, such as K-Nearest Neighbours, Logistic Regression, Gaussian Naive Bayes, Support Vector Machine, Decision Tree Classifier and Random Forest Classifier, were implemented on the dataset. The proposed method achieves 91% accuracy in detecting sway variation and would help the rehabilitation specialist to objectively identify the patient’s condition in the initial stage and educate the patient about disease progression

    Eccentric and Concentric Strength Training in Patients with Knee Osteoarthritis– A Systematic Review

    No full text
    To analyse the existing evidence on the effects of concentric and eccentric exercises on pain, strength, and functional outcomes in patients with knee osteoarthritis. Searches were conducted in PubMed, Scopus, Cochrane, and Excerpta Medica Database (EMBASE), from inception to June 2022, for articles comparing the effectiveness of eccentric and concentric training for individuals with knee osteoarthritis. The quality of the included studies was assessed using the PEDro scale

    Effectiveness of balance training on pain and functional outcomes in knee osteoarthritis: A systematic review and meta-analysis [version 2; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Background: Knee osteoarthritis (OA) is a musculoskeletal disorder that causes pain and increasing loss of function, resulting in reduced proprioceptive accuracy and balance. Therefore, the goal of this systematic review and meta-analysis is to evaluate the effectiveness of balance training on pain and functional outcomes in knee OA. Methods: “PubMed”, “Scopus”, “Web of Science”, “Cochrane”, and “Physiotherapy Evidence Database” were searched for studies conducted between January 2000 and December 2021. Randomized controlled trials (RCTs) that investigated the effectiveness of balance training in knee OA, as well as its effects on pain and functional outcome measures, were included. Conference abstracts, case reports, observational studies, and clinical commentaries were not included. Meta-analysis was conducted for the common outcomes, i.e., Visual Analog Scale (VAS), The Timed Up and Go (TUG), Western Ontario and McMaster Universities Arthritis Index (WOMAC). The PEDro scale was used to determine the quality of the included studies. Results: This review includes 22 RCTs of which 17 articles were included for meta-analysis. The included articles had 1456 participants. The meta-analysis showed improvement in the VAS scores in the experimental group compared to the control group [I 2= 92%; mean difference= -0.79; 95% CI= -1.59 to 0.01; p<0.05] and for the WOMAC scores the heterogeneity (I 2) was 81% with a mean difference of -0.02 [95% CI= -0.44 to 0.40; p<0.0001]. The TUG score was analyzed, the I 2 was 95% with a mean difference of -1.71 [95% CI= -3.09 to -0.33; p<0.0001] for the intervention against the control group. Conclusions: Balance training significantly reduced knee pain and improved functional outcomes measured with TUG. However, there was no difference observed in WOMAC. Although due to the heterogeneity of the included articles the treatment impact may be overestimated. Registration: The current systematic review was registered in PROSPERO on 7th October 2021 (registration number CRD42021276674)

    Effectiveness of Novel Facial Stretching with Structured Exercise Regimen vs Conventional Exercise Regimen for Acute Bell’s Palsy: A Facility Based Single Blinded Randomized Clinical Trial

    No full text
    Purpose of the study was to assess the effects of a novel technique involving facial stretching of the unaffected side along with a structured exercise for the affected side on facial symmetry and facial functions as compared to a conventional exercise. The study concluded that the facial stretching and structured exercise program exhibited promising results in enhancing facial symmetry and function in acute Bell’s palsy when compared to conventional exercise regimen

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi

    Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb\bf V_{tb}

    No full text
    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb−1^{−1} per experiment. The t-channel cross section is measured to be σt_t=2.25−0.31+0.29_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t_{s+t}=3.30−0.40+0.52_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σs_s/σt_t. The resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb_{tb}|=1.02−0.05+0.06_{-0.05}^{+0.06}, corresponding to |Vtb_{tb}|>0.92 at the 95% C.L

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    International audienceDrell-Yan lepton pairs produced in the process pp¯→ℓ+ℓ-+X through an intermediate Îł*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2Ξefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9–10  fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2Ξefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2ΞW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2ΞW=0.22324±0.00033 or equivalently, MW=80.367±0.017  GeV/c2
    corecore