45 research outputs found

    Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions.

    Get PDF
    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Study on transepithelial movement of 3H-androgen in the rat seminiferous and epididymal tubules

    Get PDF
    微小穿刺法と微小灌流法を用いた。精細管の管内アンドロゲン濃度は間質液中のその濃度が10-2, 000nMに増大するに従い直線的に増大したが, 精巣上体頭部における管内アンドロゲン濃度は間質液中の濃度が増大するに従い双曲線的に増大し, 精細管におけるそれよりもはるかに高い値を示した。灌流液中に0.1nMのジニトロフェノール, 0.1mMのKCN, 100μg/mlのサイクロヘキサミドを加えたとき, 管内アンドロゲンの移行は組織ATP濃度とともに有意に減少した。アンドロゲン結合蛋白を含まない人工的精上体頭部の管内液で管内を灌流したとき濃度勾配に抗したアンドロゲン移行は完全に抑制されたThe mechanisms involved in the maintenance of the endocrinological microenvironment of the seminiferous and epididymal tubules were examined in a series of experiments utilizing in vivo microperifusion, microperfusion, and micropuncture technique. The intraluminal 3H-androgen concentration in the seminiferous tubules increased linearly as the interstitial 3H-androgen concentrations increased from 10 nM to 2, 000 nM, but in the caput epididymidal tubules, the intraluminal 3H-androgen concentration increased hyperbolically across the same range of peritubular 3H-androgen concentration. Intraluminal 3H-androgen concentrations in the caput epididymidis did not rise above approximately 340 nM even when the peritubular 3H-androgen concentration exceeded 2, 000 nM. Perifusion of caput tubules with 0.1 mM dinitrophenol or potassium cyanide or 100 micrograms/ml cyclohexamide significantly reduced the proluminal 3H-androgen movement, but tubules perifused with control medium did not support antigrade 3H-androgen movement in the absence of native lumen fluids which contain androgen-binding protein. Energy-requiring protein synthesis is necessary for antigrade 3H-androgen movement in the caput epididymidis, but the mechanism for the interaction of intracellular protein(s) and 3H-androgen movement remains undetermined

    Localised invertebrate grazing moderates the effect of warming on competitive fungal interactions

    No full text
    Outcomes of competitive mycelial interactions determine saprotrophic fungal community composition and are regulated by biotic (e.g. invertebrate grazing) and abiotic (e.g. climate) factors. Selective grazing can moderate the effects of elevated temperature on fungal interactions. In natural systems, however, patchy and aggregative distributions of invertebrates exert unequal grazing pressures on competing fungi. We explored whether restricting grazing to the territory of one fungal competitor affected the potential of Oniscus asellus (Isopoda) to control the outcomes of interactions and mediate responses to elevated temperature. Restricted grazing prevented the dominance of any one fungal species in the majority of interactions and, indirectly, altered the influence of warming. The location of grazer restriction was, however, only important during certain interactions. Selective pressures reflected feeding preferences, but grazer location determined the extent of selective grazing pressure exerted. Aggregation of macro-invertebrate grazers appears important in maintaining multi-species assemblages of wood-decomposer fungi in a changing climate

    Localised invertebrate grazing moderates the effect of warming on competitive fungal interactions

    No full text
    Outcomes of competitive mycelial interactions determine saprotrophic fungal community composition and are regulated by biotic (e.g. invertebrate grazing) and abiotic (e.g. climate) factors. Selective grazing can moderate the effects of elevated temperature on fungal interactions. In natural systems, however, patchy and aggregative distributions of invertebrates exert unequal grazing pressures on competing fungi. We explored whether restricting grazing to the territory of one fungal competitor affected the potential of Oniscus asellus (Isopoda) to control the outcomes of interactions and mediate responses to elevated temperature. Restricted grazing prevented the dominance of any one fungal species in the majority of interactions and, indirectly, altered the influence of warming. The location of grazer restriction was, however, only important during certain interactions. Selective pressures reflected feeding preferences, but grazer location determined the extent of selective grazing pressure exerted. Aggregation of macro-invertebrate grazers appears important in maintaining multi-species assemblages of wood-decomposer fungi in a changing climate
    corecore