3,201 research outputs found

    Observability of a projected new state of matter: a metallic superfluid

    Full text link
    Dissipationless quantum states, such as superconductivity and superfluidity, have attracted interest for almost a century. A variety of systems exhibit these macroscopic quantum phenomena, ranging from superconducting electrons in metals to superfluid liquids, atomic vapours, and even large nuclei. It was recently suggested that liquid metallic hydrogen could form two new unusual dissipationless quantum states, namely the metallic superfluid and the superconducting superfluid. Liquid metallic hydrogen is projected to occur only at an extremely high pressure of about 400 GPa, while pressures on hydrogen of 320 GPa having already been reported. The issue to be adressed is if this state could be experimentally observable in principle. We propose four experimental probes for detecting it.Comment: in print in Phys. Rev. Let

    Diagrammatic quantum field formalism for localized electrons

    Full text link
    We introduce a diagrammatic quantum field formalism for the evaluation of normalized expectation values of operators, and suitable for systems with localized electrons. It is used to develop a convergent series expansion for the energy in powers of overlap integrals of single-particle orbitals. This method gives intuitive and practical rules for writing down the expansion to arbitrary order of overlap, and can be applied to any spin configuration and to any dimension. Its applicability for systems with well localized electrons has been illustrated with examples, including the two-dimensional Wigner crystal and spin-singlets in the low-density electron gas.Comment: 13 pages, 0 figure

    Confinement-induced Berry phase and helicity-dependent photocurrents

    Full text link
    The photocurrent in an optically active metal is known to contain a component that switches sign with the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of the Bloch electrons via the "anomalous velocity" of Karplus and Luttinger. We consider quantum wells in which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-binding results, it is shown that the Berry phase contribution is determined for realistic wells by a cubic Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the magnitude of the Berry-phase effect suggest that it may already have been observed in quantum well experiments.Comment: 4 pages, 2 figure

    Observation of a metallic superfluid in a numerical experiment

    Full text link
    We report the observation, in Monte Carlo simulations, of a novel type of quantum ordered state: {\it the metallic superfluid}. The metallic superfluid features ohmic resistance to counter-flows of protons and electrons, while featuring dissipationless co-flows of electrons and protons. One of the candidates for a physical realization of this remarkable state of matter is hydrogen or its isotopes under high compression. This adds another potential candidate to the presently known quantum dissipationless states, namely superconductors, superfluid liquids and vapours, and supersolids.Comment: 4 pages, 2 figures. Accepted for publication in Phys. Rev. Let

    Level density of a Fermi gas and integer partitions: a Gumbel-like finite-size correction

    Full text link
    We investigate the many-body level density of gas of non-interacting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics as well as differences with respect to the Bose gas.Comment: 5 pages, 1 figure, one figure added, accepted for publication in Phys. Rev.

    Temperature Dependence of Interlayer Magnetoresistance in Anisotropic Layered Metals

    Full text link
    Studies of interlayer transport in layered metals have generally made use of zero temperature conductivity expressions to analyze angle-dependent magnetoresistance oscillations (AMRO). However, recent high temperature AMRO experiments have been performed in a regime where the inclusion of finite temperature effects may be required for a quantitative description of the resistivity. We calculate the interlayer conductivity in a layered metal with anisotropic Fermi surface properties allowing for finite temperature effects. We find that resistance maxima are modified by thermal effects much more strongly than resistance minima. We also use our expressions to calculate the interlayer resistivity appropriate to recent AMRO experiments in an overdoped cuprate which led to the conclusion that there is an anisotropic, linear in temperature contribution to the scattering rate and find that this conclusion is robust.Comment: 8 pages, 4 figure

    A causal look into the quantum Talbot effect

    Get PDF
    A well-known phenomenon in both optics and quantum mechanics is the so-called Talbot effect. This near field interference effect arises when infinitely periodic diffracting structures or gratings are illuminated by highly coherent light or particle beams. Typical diffraction patterns known as quantum carpets are then observed. Here the authors provide an insightful picture of this nonlocal phenomenon as well as its classical limit in terms of Bohmian mechanics, also showing the causal reasons and conditions that explain its appearance. As an illustration, theoretical results obtained from diffraction of thermal He atoms by both N-slit arrays and weak corrugated surfaces are analyzed and discussed. Moreover, the authors also explain in terms of what they call the Talbot-Beeby effect how realistic interaction potentials induce shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure

    Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition

    Get PDF
    We studied by angle-resolved photoelectron spectroscopy the strain-related structural transition from a pseudomorphic monolayer (ML) to a striped incommensurate phase in an Ag thin film grown on Pt(111). We exploited the surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 < x < 5 ML, and monitored the dispersion of the Bi-derived interface states to probe the structure of the underlying Ag film. We find that their symmetry changes from threefold to sixfold and back to threefold in the Ag coverage range studied. Together with previous scanning tunneling microscopy and photoelectron diffraction data, these results provide a consistent microscopic description of the coverage-dependent structural transition.Comment: 10 pages, 9 figure

    Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: a Hamiltonian Approach

    Full text link
    y formally diagonalizing with accuracy â„Ź\hbar the Hamiltonian of electrons in a crystal subject to electromagnetic perturbations, we resolve the debate on the Hamiltonian nature of semiclassical equations of motion with Berry-phase corrections, and therefore confirm the validity of the Liouville theorem. We show that both the position and momentum operators acquire a Berry-phase dependence, leading to a non-canonical Hamiltonian dynamics. The equations of motion turn out to be identical to the ones previously derived in the context of electron wave-packets dynamics.Comment: 4 page

    A topological charge selection rule for phase singularities

    Get PDF
    We present an study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified. The role played by the underlying symmetry is emphasized. An effective model describing the short range dynamics of the vortex clusters has been designed. A method to engineer any desired configuration of clusters of phase singularities is proposed. Its flexibility to create and control clusters of vortices is discussed.Comment: 4 pages, 3 figure
    • …
    corecore