The photocurrent in an optically active metal is known to contain a component
that switches sign with the helicity of the incident radiation. At low
frequencies, this current depends on the orbital Berry phase of the Bloch
electrons via the "anomalous velocity" of Karplus and Luttinger. We consider
quantum wells in which the parent material, such as GaAs, is not optically
active and the relevant Berry phase only arises as a result of quantum
confinement. Using an envelope approximation that is supported by numerical
tight-binding results, it is shown that the Berry phase contribution is
determined for realistic wells by a cubic Berry phase intrinsic to the bulk
material, the well width, and the well direction. These results for the
magnitude of the Berry-phase effect suggest that it may already have been
observed in quantum well experiments.Comment: 4 pages, 2 figure