3,879 research outputs found

    Response time correlations for platinum resistance thermometers in flowing fluids

    Get PDF
    The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases

    Response time for multilayered platinum resistance thermometers

    Get PDF
    Response time constants for several multilayered temperature transducers were determined numerically by using Martin Marietta's MITAS software package which is available at NASA Langley Research Center. Present results were found in close agreement with the solutions reported in the literature, thus, the capability of MITAS was justified. On the basis of experiences gained, the MITAS is recommended for use in predicting the response time constants of sensors by an in-situ technique

    Glow-Discharge Enhanced Permeation of Oxygen Through Silver

    Get PDF
    The permeation of oxygen through Ag0.05Zr over the temperature range of 300-650°C under glow-discharge conditions has been studied and compared to the permeation of thermally dissociated molecular oxygen. A low-energy dc glow-discharge in O2 has been employed which produced approximately 10% atoms. The permeation rate during the glow discharge was found to be much higher (a factor of ∼10) than without the glow discharge. The small fraction of oxygen atoms generated appears to dominate the permeation because of much higher solution probabilities. Below 500°C, the activation energy for the permeation with glow discharge was found to be 15.5 kcal/mol compared to 22.0 kcal/mol without glow discharge (molecular oxygen). Above 500°C, the enhanced permeation with glow discharge gradually diminishes with increasing temperature and approaches that observed without the glow discharge at high temperature; the reason for this is primarily because of the thermal instability of the supersaturated high-pressure interface where atoms recombine and desorb back into the gas phase

    Compliant Wall Surface Motion and its Effect on the Structure of a Turbulent Boundary Layer

    Get PDF
    The status of the continuing compliant wall drag reduction research at NASA-Langley Research Center is discussed. Preliminary surface motion calculations are reported along with compliant surface design concepts and their numerical models. A compliant drag reduction theory based on stabilizing the turbulent substructure is proposed and previous experiments have been examined relative to that theory. Results of recent low speed compliant surface experiments have been reported which include initial attempts to measure local compliant surface motion

    Effect of micronutrient fortified beverage on nutritional anaemia during pregnancy

    Get PDF
    (East African Medical Journal: 2002 79 (11): 598-603

    Re-187-Os-187, Pt-190-Os-186 Isotopic and Highly Siderophile Element Systematics of Group IVA Irons

    Get PDF
    We have recently completed Re-187-Os-187 and Pt-190-Os-186 isotopic and elemental studies of the two largest magmatic iron meteorite groups, IIAB and IIIAB [1]. These studies revealed closed-system behavior of both isotopic systems, but complex trace element behavior for Re, Pt and Os in group IIIAB. Here we examine isotopic and trace elemental systematics of group IVA irons. The IVA irons are not as extensively fractionated as IIAB and IIIAB and their apparently less complex crystallization history may make for more robust interpretation of the relative partitioning behavior of Re, Pt and Os, as well as the other highly siderophile elements (HSE) measured here; Pd, Ru and Ir [e.g. 2]. An additional goal of our continuing research plan for iron meteorites is to assess the possibility of relating certain ungrouped irons with major groups via trace element modeling. Here, the isotopic and trace element systematics of the ungrouped irons Nedagolla and EET 83230 are compared with the IVA irons

    The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel

    Get PDF
    We report new radial velocity observations of GP Vel/HD77581, the optical companion to the eclipsing X-ray pulsar Vela X-1. Using data spanning more than two complete orbits of the system, we detect evidence for tidally induced non-radial oscillations on the surface of GP Vel, apparent as peaks in the power spectrum of the residuals to the radial velocity curve fit. By removing the effect of these oscillations (to first order) and binning the radial velocities, we have determined the semi-amplitude of the radial velocity curve of GP Vel to be K_o=22.6+/-1.5 km/s. Given the accurately measured semi-amplitude of the pulsar's orbit, the mass ratio of the system is 0.081+/-0.005. We are able to set upper and lower limits on the masses of the component stars as follows. Assuming GP Vel fills its Roche lobe then the inclination angle of the system, i=70.1+/-2.6 deg. In this case we obtain the masses of the two stars as M_x=2.27 +/-0.17 M_sun for the neutron star and M_o=27.9+/-1.3 M_sun for GP Vel. Conversely, assuming the inclination angle is i=90 deg, the ratio of the radius of GP Vel to the radius of its Roche lobe is beta=0.89+/-0.03 and the masses of the two stars are M_x=1.88+/-0.13 M_sun and M_o=23.1+/-0.2 M_sun. A range of solutions between these two sets of limits is also possible, corresponding to other combinations of i and beta. In addition, we note that if the zero phase of the radial velocity curve is allowed as a free parameter, rather than constrained by the X-ray ephemeris, a significantly improved fit is obtained with an amplitude of 21.2+/-0.7 km/s and a phase shift of 0.033+/-0.007 in true anomaly. The apparent shift in the zero phase of the radial velocity curve may indicate the presence of an additional radial velocity component at the orbital period.Comment: Accepted for publication in Astronomy & Astrophysic

    Quantum properties of classical Fisher information

    Get PDF
    The Fisher information of a quantum observable is shown to be proportional to both (i) the difference of a quantum and a classical variance, thus providing a measure of nonclassicality; and (ii) the rate of entropy increase under Gaussian diffusion, thus providing a measure of robustness. The joint nonclassicality of position and momentum observables is shown to be complementary to their joint robustness in an exact sense.Comment: 16 page

    Identification of QTLs associated with resistance to Phomopsis pod blight (Diaporthe toxica) in Lupinus albus

    Get PDF
    Phomopsis blight in Lupinus albus is caused by a fungal pathogen, Diaporthe toxica. It can invade all plant parts, leading to plant material becoming toxic to grazing animals, and potentially resulting in lupinosis. Identifying sources of resistance and breeding for resistance remains the best strategy for controlling Phomopsis and reducing lupinosis risks. However, loci associated with resistance to Phomopsis blight have not yet been identified. In this study, quantitative trait locus (QTL) analysis identified genomic regions associated with resistance to Phomopsis pod blight (PPB) using a linkage map of L. albus constructed previously from an F8 recombinant inbred line population derived from a cross between Kiev-Mutant (susceptible to PPB) and P27174 (resistant to PPB). Phenotyping was undertaken using a detached pod assay. In total, we identified eight QTLs for resistance to PPB on linkage group (LG) 3, LG6, LG10, LG12, LG17 and LG27 from different phenotyping environments. However, at least one QTL, QTL-5 on LG10 was consistently detected in both phenotyping environments and accounted for up to 28.2% of the total phenotypic variance. The results of this study showed that the QTL-2 on LG3 interacts epistatically with QTL-5 and QTL-6, which map on LG10 and LG12, respectively
    corecore