990 research outputs found

    Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    Get PDF
    Cataloged from PDF version of article.We study the ground-state properties of a two-dimensional spinpolarized fluid of dipolar fermions within the Euler-Lagrange Fermi-hypemetted-chain approximation. Our method is based on the solution of a scattering Schrodinger equation for the "pair amplitude" root g(r), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow-Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree-Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation-dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density-density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. (C) 2013 Elsevier Inc. All rights reserved

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    NARX models for simulation of the start-up operation of a single-shaft gas turbine

    Get PDF
    In this study, nonlinear autoregressive exogenous (NARX) models of a heavy-duty single-shaft gas turbine (GT) are developed and validated. The GT is a power plant gas turbine (General Electric PG 9351FA) located in Italy. The data used for model development are three time series data sets of two different maneuvers taken experimentally during the start-up procedure. The resulting NARX models are applied to three other experimental data sets and comparisons are made among four significant outputs of the models and the corresponding measured data. The results show that NARX models are capable of satisfactory prediction of the GT behavior and can capture system dynamics during start-up operation

    Density-Functional Theory of Graphene Sheets

    Full text link
    We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous external potentials and electron-electron interactions on an equal footing. The theory is able to account for the the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets.Comment: 11 pages, 9 figures, submitted. High-quality figures can be requested to the author

    Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps

    Full text link
    Two-component Fermi gases with tunable repulsive or attractive interactions inside quasi-one-dimensional (Q1D) harmonic wells may soon become the cleanest laboratory realizations of strongly correlated Luttiger and Luther-Emery liquids under confinement. We present a microscopic Kohn-Sham density-functional theory of these systems, with specific attention to a gas on the approach to a confinement-induced Feshbach resonance. The theory employs the one-dimensional Gaudin-Yang model as the reference system and transfers the appropriate Q1D ground-state correlations to the confined inhomogeneous gas {\it via} a suitable local-density approximation to the exchange and correlation energy functional. Quantitative understanding of the role of the interactions in the bulk shell structure of the axial density profile is thereby achieved. While repulsive intercomponent interactions depress the amplitude of the shell structure of the noninteracting gas, attractive interactions stabilize atomic-density waves through spin pairing. These should be clearly observable in atomic clouds containing of the order of up to a hundred atoms.Comment: 13 pages, 9 figures, submitte

    The impact of teamwork on an organization’s performance: a cooperative game’s approach

    Get PDF
    In this article we study the impact of teamwork on the organizations’ performance, considering a cooperative game’s framework. To promote the teamwork culture, performance indexes are considered individually and collectively, respectively, and by comparing the scores that every employee earns individually and collectively, their differences become obvious. In this approach, a cooperative games’ model is used in order to improve the organization’s performance. The proposed model, in addition to evaluating the organization and employee's activities, can implement all payments, including the overtime pay, reward, etc., fairly and along with increasing performance and satisfaction. The cooperative approach creates effective communications between employees and authorities and enhances their motivation for teamwork. Moreover, results can be used for decisions related to employees (such as promotion, transition, firing, and detachment), analysis of training requirements, employees’ development, and research and plan valuation. Our findings show that the collaborative coefficient is a key factor in increasing productivity and improving the efficiency of an organization in the long run. The collaborative coefficient is a new concept in teamwork that has rarely been considered in scientific research.info:eu-repo/semantics/publishedVersio

    Ground state properties of a confined simple atom by C60_{60} fullerene

    Full text link
    We numerically study the ground state properties of endohedrally confined hydrogen (H) or helium (He) atom by a molecule of C60_{60}. Our study is based on Diffusion Monte Carlo method. We calculate the effects of centered and small off-centered H- or He-atom on the ground state properties of the systems and describe the variation of ground state energies due to the C60_{60} parameters and the confined atomic nuclei positions. Finally, we calculate the electron distributions in xzx-z plane in a wide range of C60_{60} parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op
    corecore