1,660 research outputs found

    Robust Simulation of a TaO Memristor Model

    Get PDF
    This work presents a continuous and differentiable approximation of a Tantalum oxide memristor model which is suited for robust numerical simulations in software. The original model was recently developed at Hewlett Packard labs on the basis of experiments carried out on a memristor manufactured in house. The Hewlett Packard model of the nano-scale device is accurate and may be taken as reference for a deep investigation of the capabilities of the memristor based on Tantalum oxide. However, the model contains discontinuous and piecewise differentiable functions respectively in state equation and Ohm's based law. Numerical integration of the differential algebraic equation set may be significantly facilitated under substitution of these functions with appropriate continuous and differentiable approximations. A detailed investigation of classes of possible continuous and differentiable kernels for the approximation of the discontinuous and piecewise differentiable functions in the original model led to the choice of near optimal candidates. The resulting continuous and differentiable DAE set captures accurately the dynamics of the original model, delivers well-behaved numerical solutions in software, and may be integrated into a commercially-available circuit simulator

    The NIF LinkOut Broker: A Web Resource to Facilitate Federated Data Integration using NCBI Identifiers

    Get PDF
    This paper describes the NIF LinkOut Broker (NLB) that has been built as part of the Neuroscience Information Framework (NIF) project. The NLB is designed to coordinate the assembly of links to neuroscience information items (e.g., experimental data, knowledge bases, and software tools) that are (1) accessible via the Web, and (2) related to entries in the National Center for Biotechnology Information’s (NCBI’s) Entrez system. The NLB collects these links from each resource and passes them to the NCBI which incorporates them into its Entrez LinkOut service. In this way, an Entrez user looking at a specific Entrez entry can LinkOut directly to related neuroscience information. The information stored in the NLB can also be utilized in other ways. A second approach, which is operational on a pilot basis, is for the NLB Web server to create dynamically its own Web page of LinkOut links for each NCBI identifier in the NLB database. This approach can allow other resources (in addition to the NCBI Entrez) to LinkOut to related neuroscience information. The paper describes the current NLB system and discusses certain design issues that arose during its implementation

    Volunteering for Human Service Provisions: Lessons from Italy and the U.S.A.

    Get PDF
    The increased reliance on volunteers in all industrialized democracies has been parallelled by growing fiscal crises in most states, widespread criticism of welfare, and increased demand for social services. While volunteer work is presumed to be an alternative to public services, its feasibility is not yet clear. We suggest that a cross-national comparison of two significantly different countries would provide more information about volunteerism as a partial substitute for public services. We compared the United States where volunteerism is a widespread tradition and Italy where there has been a rediscovery of volunteerism since the 1980s. Differences between the two countries in the practice of volunteerism are examined from several perspectives. They include the relationships between volunteers and the statutory sector, the professionalization of volunteer activity, the role of citizen participation in a capitalistic society, and the Lockean principle of limited government. Finally, we conclude that while there are many differences in welfare provision between the United States and Italy, they do have a common element: increased reliance on volunteers for every aspect of day-to-day life; however, this reliance is mostly ideologically-based and may prove unfounded and costly

    Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    Get PDF
    Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g., with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal cell (PC) extends thousands of synapses over macroscopic distances (∼cm). The contrasting requirements of high-resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these “potential synapses” functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto PC dendrites from the axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    Principal Semantic Components of Language and the Measurement of Meaning

    Get PDF
    Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of “good/bad” (valence), “calm/excited” (arousal), and “open/closed” (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number (∼4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind

    A Novel Method for Clustering Cellular Data to Improve Classification

    Full text link
    Many fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring the need for organizing and interpreting large datasets. A popular approach partitions data into manageable subsets via hierarchical clustering, but objective methods to determine the appropriate classification granularity are missing. We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters. Here we present the corresponding protocol to classify cellular datasets by combining data-driven unsupervised hierarchical clustering with statistical testing. These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values, including molecular, physiological, and anatomical datasets. We demonstrate the protocol using cellular data from the Janelia MouseLight project to characterize morphological aspects of neurons.Comment: 16 pages, 13 figure
    corecore