4,258 research outputs found
Dynamics of a classical Hall system driven by a time-dependent Aharonov--Bohm flux
We study the dynamics of a classical particle moving in a punctured plane
under the influence of a strong homogeneous magnetic field, an electrical
background, and driven by a time-dependent singular flux tube through the hole.
We exhibit a striking classical (de)localization effect: in the far past the
trajectories are spirals around a bound center; the particle moves inward
towards the flux tube loosing kinetic energy. After hitting the puncture it
becomes ``conducting'': the motion is a cycloid around a center whose drift is
outgoing, orthogonal to the electric field, diffusive, and without energy loss
Correlated Markov Quantum Walks
We consider the discrete time unitary dynamics given by a quantum walk on
performed by a particle with internal degree of freedom, called coin
state, according to the following iterated rule: a unitary update of the coin
state takes place, followed by a shift on the lattice, conditioned on the coin
state of the particle. We study the large time behavior of the quantum
mechanical probability distribution of the position observable in for
random updates of the coin states of the following form. The random sequences
of unitary updates are given by a site dependent function of a Markov chain in
time, with the following properties: on each site, they share the same
stationnary Markovian distribution and, for each fixed time, they form a
deterministic periodic pattern on the lattice.
We prove a Feynman-Kac formula to express the characteristic function of the
averaged distribution over the randomness at time in terms of the nth power
of an operator . By analyzing the spectrum of , we show that this
distribution posesses a drift proportional to the time and its centered
counterpart displays a diffusive behavior with a diffusion matrix we compute.
Moderate and large deviations principles are also proven to hold for the
averaged distribution and the limit of the suitably rescaled corresponding
characteristic function is shown to satisfy a diffusion equation.
An example of random updates for which the analysis of the distribution can
be performed without averaging is worked out. The random distribution displays
a deterministic drift proportional to time and its centered counterpart gives
rise to a random diffusion matrix whose law we compute. We complete the picture
by presenting an uncorrelated example.Comment: 37 pages. arXiv admin note: substantial text overlap with
arXiv:1010.400
Unanimity Rule on networks
We introduce a model for innovation-, evolution- and opinion dynamics whose
spreading is dictated by unanimity rules, i.e. a node will change its (binary)
state only if all of its neighbours have the same corresponding state. It is
shown that a transition takes place depending on the initial condition of the
problem. In particular, a critical number of initially activated nodes is
needed so that the whole system gets activated in the long-time limit. The
influence of the degree distribution of the nodes is naturally taken into
account. For simple network topologies we solve the model analytically, the
cases of random, small-world and scale-free are studied in detail.Comment: 7 pages 4 fig
An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics
The numerical simulation of acoustic waves in complex 3D media is a key topic
in many branches of science, from exploration geophysics to non-destructive
testing and medical imaging. With the drastic increase in computing
capabilities this field has dramatically grown in the last twenty years.
However many 3D computations, especially at high frequency and/or long range,
are still far beyond current reach and force researchers to resort to
approximations, for example by working in 2D (plane strain) or by using a
paraxial approximation. This article presents and validates a numerical
technique based on an axisymmetric formulation of a spectral finite-element
method in the time domain for heterogeneous fluid-solid media. Taking advantage
of axisymmetry enables the study of relevant 3D configurations at a very
moderate computational cost. The axisymmetric spectral-element formulation is
first introduced, and validation tests are then performed. A typical
application of interest in ocean acoustics showing upslope propagation above a
dipping viscoelastic ocean bottom is then presented. The method correctly
models backscattered waves and explains the transmission losses discrepancies
pointed out in Jensen et al. (2007). Finally, a realistic application to a
double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical
Random Time-Dependent Quantum Walks
We consider the discrete time unitary dynamics given by a quantum walk on the
lattice performed by a quantum particle with internal degree of freedom,
called coin state, according to the following iterated rule: a unitary update
of the coin state takes place, followed by a shift on the lattice, conditioned
on the coin state of the particle. We study the large time behavior of the
quantum mechanical probability distribution of the position observable in
when the sequence of unitary updates is given by an i.i.d. sequence of
random matrices. When averaged over the randomness, this distribution is shown
to display a drift proportional to the time and its centered counterpart is
shown to display a diffusive behavior with a diffusion matrix we compute. A
moderate deviation principle is also proven to hold for the averaged
distribution and the limit of the suitably rescaled corresponding
characteristic function is shown to satisfy a diffusion equation. A
generalization to unitary updates distributed according to a Markov process is
also provided. An example of i.i.d. random updates for which the analysis of
the distribution can be performed without averaging is worked out. The
distribution also displays a deterministic drift proportional to time and its
centered counterpart gives rise to a random diffusion matrix whose law we
compute. A large deviation principle is shown to hold for this example. We
finally show that, in general, the expectation of the random diffusion matrix
equals the diffusion matrix of the averaged distribution.Comment: Typos and minor errors corrected. To appear In Communications in
Mathematical Physic
Réponses phénologiques du riz irrigué dans le Sahel
Dans le Sahel, les périodes froides causent des pertes de rendement dues à la stérilité des épillets chez le riz cultivé tardivement. Les systèmes de riziculture au Sahel pourront donc bénéficier des hausses de températures. Des températures plus élevées pendant la phase végétative entraîneront des cycles de culture raccourcis, tandis que pendant les périodes froides de la phase reproductive, des températures plus élevées pourront réduire la stérilité. Pour les périodes chaudes, ont attend des effets négatifs sur la production de la biomasse et l'augmentation de la stérilité causée par la chaleur. Sur la base des données phénologiques d'une vaste gamme de matériel génétique collectées au début des années 1990 au Sénégal, un modèle (RIDEV) a été développé pour estimer la durée et la stérilité de multiples variétés de riz dans le Sahel comme une fonction de la date de semis. Cependant, des différences observées entre les cycles observés dans les champs des paysans et ceux évalués par RIDEV ont été rapportées. Cela pourrait s'expliquer soit par des défaillances du modèle, l'évolution variétale et/ ou par le changement climatique. Actuellement, à Ndiaye (zone côtière semi-aride) et Fanaye (zone continentale semi-aride), 10 variétés de riz très différentes sont cultivées toute l'année avec des dates de semis décalées d'un mois en vue de déterminer la durée, le taux d'apparition des feuilles et la stérilité dans les conditions climatiques actuelles. Ces variétés incluent certains des génotypes précédemment observés de même que certaines variétés de référence tolérantes à la chaleur et au froid. Les résultats seront utilisés pour améliorer RIDEV en vue des prédictions des réponses des cultures au changement climatique. Les résultats préliminaires avec une attention particulière sur la dérivation des constantes photothermiques seront présentés pour l'ensemble de la première année et comparés aux résultats issus des années précédentes.(Texte intégral
New method for the time calibration of an interferometric radio antenna array
Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect
high-energy cosmic rays via the radio emission from atmospheric extensive air
showers. LOPES is an array of dipole antennas placed within and triggered by
the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology,
Germany. The antennas are digitally combined to build a radio interferometer by
forming a beam into the air shower arrival direction which allows measurements
even at low signal-to-noise ratios in individual antennas. This technique
requires a precise time calibration. A combination of several calibration steps
is used to achieve the necessary timing accuracy of about 1 ns. The group
delays of the setup are measured, the frequency dependence of these delays
(dispersion) is corrected in the subsequent data analysis, and variations of
the delays with time are monitored. We use a transmitting reference antenna, a
beacon, which continuously emits sine waves at known frequencies. Variations of
the relative delays between the antennas can be detected and corrected for at
each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in
Nuclear Inst. and Methods in Physics Research, A, available at:
http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a
Ballistic transport in random magnetic fields with anisotropic long-ranged correlations
We present exact theoretical results about energetic and dynamic properties
of a spinless charged quantum particle on the Euclidean plane subjected to a
perpendicular random magnetic field of Gaussian type with non-zero mean. Our
results refer to the simplifying but remarkably illuminating limiting case of
an infinite correlation length along one direction and a finite but strictly
positive correlation length along the perpendicular direction in the plane.
They are therefore ``random analogs'' of results first obtained by A. Iwatsuka
in 1985 and by J. E. M\"uller in 1992, which are greatly esteemed, in
particular for providing a basic understanding of transport properties in
certain quasi-two-dimensional semiconductor heterostructures subjected to
non-random inhomogeneous magnetic fields
- …
