751 research outputs found

    Sub-picosecond injection of electrons from excited [Ru(2,2′-bipy-4,4′-dicarboxy)<sub>2</sub>(SCN)<sub>2</sub>] into TiO<sub>2</sub> using transient mid-infrared spectroscopy

    Get PDF
    We have used femtosecond pump-probe spectroscopy to time resolve the injection of electrons into nanocrystalline TiO2 film electodes under ambient conditions following photoexcitation of the adsorbed dye, [Ru(4,4’-dicarboxy-2,2’-bipyridine)2(NCS)2] (N3). Pumping at one of the metal-to-ligand charge transfer adsorption peaks and probing the absorption of electrons injected into the TiO2 conduction band at 1.52 µm and in the range of 4.1 to 7.0 µm, we have directly observed the arrival of the injected electrons. Our measurements indicate an instrument-limited ~50-fs upper limit on the electron injection time under ambient conditions in air. We have compared the infrared transient absorption for noninjecting (blank) systems consisting of N3 in ethanol and N3 adsorbed to films of nanocrystalline Al2O3 and ZrO2, and found no indication of electron injection at probe wavelengths in the mid-IR (4.1 to 7.0 µm). At 1.52 µm interferences exist in the observed transient adsorption signal for the blanks

    Steps in the bacterial flagellar motor

    Get PDF
    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps [Sowa et al. (2005) Nature 437, 916--919]. Here we propose a simple physical model that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties, and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. Our model also predicts a sublinear torque-speed relationship at low torque, and a peak in rotor diffusion as a function of torque

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Striking the Right Balance of Intermolecular Coupling for High-Efficiency Singlet Fission

    Get PDF
    Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet–triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields

    Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    Get PDF
    BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression

    Differential family and peer environmental factors are related to severity and comorbidity in childresn with ADHD

    Get PDF
    Contains fulltext : 70260.pdf (publisher's version ) (Closed access)Behavioral genetic studies imply that salient environmental influences operate within families, making siblings in a family different rather than similar. This study is the first one to examine differential sibling experiences (as measured with the Sibling Inventory of Differential Experience) and its effect on behavioral outcomes within ADHD families. Subjects were 45 Dutch ADHD probands and their unaffected siblings (n = 45) aged 10-18 years. ADHD probands and their unaffected siblings reported differences in sibling interaction, parental treatment, and peer characteristics. These nonshared environmental influences were related to both the severity of ADHD symptoms as well as to comorbid problem behaviors. These findings suggest that environmental influences that operate within ADHD families appear relevant to the severity of problem behaviors of ADHD children and their siblings

    Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins

    Get PDF
    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle

    Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages

    Get PDF
    In the pharmaceutical industry, there are increasing requirements for analytical methods in quality assessment for the production of drugs. In this investigation, ion mobility spectrometry (IMS) was used for the rapid qualitative separation and identification of active ingredients in generic over-the-counter drugs and food additives in beverages. The active ingredients determined in drugs were acetaminophen, aspartame, bisacodyl, caffeine, dextromethorphan, diphenhydramine, famotidine, glucosamine, guaifenesin, loratadine, niacin, phenylephrine, pyridoxine, thiamin, and tetrahydrozoline. Aspartame and caffeine were determined in beverages. Fourteen over-the-counter drugs and beverages were analyzed. Analysis times below 10 s were obtained for IMS, and reduced mobilities were reported for the first time for 12 compounds. A quadrupole mass spectrometer coupled to a mobility spectrometer was used to assure a correct peak assignation. The combination of fast analysis, low cost, and inexpensive maintenance of IMS instruments makes IMS an attractive technique for the qualitative determination of the active ingredients in over-the-counter drugs and food additives in manufacture quality control and cleaning verification for the drug and food industries
    • …
    corecore