314 research outputs found

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds

    Get PDF
    © 2019 Springer-Verlag. This is a post-peer-review, pre-copyedit version of a paper published in Reachability Problems: 13th International Conference, RP 2019, Brussels, Belgium, September 11–13, 2019, Proceedings. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-30806-3_14A hybrid automaton is a finite state machine combined with some k real-valued continuous variables, where k determines the number of the automaton dimensions. This formalism is widely used for modelling safety-critical systems, and verification tasks for such systems can often be expressed as the reachability problem for hybrid automata. Asarin, Mysore, Pnueli and Schneider defined classes of hybrid automata lying on the boundary between decidability and undecidability in their seminal paper ‘Low dimensional hybrid systems - decidable, undecidable, don’t know’ [9]. They proved that certain decidable classes become undecidable when given a little additional computational power, and showed that the reachability question remains unsolved for some 2-dimensional systems. Piecewise Constant Derivative Systems on 2-dimensional manifolds (or PCD2m) constitute a class of hybrid automata for which decidability of the reachability problem is unknown. In this paper we show that the reachability problem becomes decidable for PCD2m if we slightly limit their dynamics, and thus we partially answer the open question of Asarin, Mysore, Pnueli and Schneider posed in [9]

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page

    Метод расчета теплообмена излучением в топке осесимметричной конфигурации на основе уравнений для компонент суммарного вектора потока лучистой энергии. Инженерная методика

    Get PDF
    На основе системы уравнений первой части статьи, получены разностные уравнения квазиодномерного метода расчета теплообмена излучением в топке котла осесимметричной конфигурации. Записаны уравнения и разностные формулы метода инженерного расчета теплообмена излучением при наличии экранной сетки около поверхности горелки. Методика пригодна для использования в инженерных расчетах при определении оптимальной конфигурации топки и определении оптимального расстояния экранной сетки до поверхности горелки

    Reachability of Uncertain Linear Systems Using Zonotopes

    Full text link
    International audienceWe present a method for the computation of reachable sets of uncertain linear systems. The main innovation of the method consists in the use of zonotopes for reachable set representation. Zonotopes are special polytopes with several interesting properties : they can be encoded efficiently, they are closed under linear transformations and Minkowski sum. The resulting method has been used to treat several examples and has shown great performances for high dimensional systems. An extension of the method for the verification of piecewise linear hybrid systems is proposed

    Asymptotic behaviour in temporal logic

    Get PDF
    International audienceno abstrac

    The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems

    Full text link
    A constant-rate multi-mode system is a hybrid system that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. Alur, Wojtczak, and Trivedi have shown that reachability problems for constant-rate multi-mode systems for open and convex safety sets can be solved in polynomial time. In this paper, we study the reachability problem for non-convex state spaces and show that this problem is in general undecidable. We recover decidability by making certain assumptions about the safety set. We present a new algorithm to solve this problem and compare its performance with the popular sampling based algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion Planning Library (OMPL).Comment: 26 page

    Certainly Unsupervisable States

    Get PDF
    This paper proposes an abstraction method for compositional synthesis. Synthesis is a method to automatically compute a control program or supervisor that restricts the behaviour of a given system to ensure safety and liveness. Compositional synthesis uses repeated abstraction and simplification to combat the state-space explosion problem for large systems. The abstraction method proposed in this paper finds and removes the so-called certainly unsupervisable states. By removing these states at an early stage, the final state space can be reduced substantially. The paper describes an algorithm with cubic time complexity to compute the largest possible set of removable states. A practical example demonstrates the feasibility of the method to solve real-world problems

    Turing machines can be efficiently simulated by the General Purpose Analog Computer

    Full text link
    The Church-Turing thesis states that any sufficiently powerful computational model which captures the notion of algorithm is computationally equivalent to the Turing machine. This equivalence usually holds both at a computability level and at a computational complexity level modulo polynomial reductions. However, the situation is less clear in what concerns models of computation using real numbers, and no analog of the Church-Turing thesis exists for this case. Recently it was shown that some models of computation with real numbers were equivalent from a computability perspective. In particular it was shown that Shannon's General Purpose Analog Computer (GPAC) is equivalent to Computable Analysis. However, little is known about what happens at a computational complexity level. In this paper we shed some light on the connections between this two models, from a computational complexity level, by showing that, modulo polynomial reductions, computations of Turing machines can be simulated by GPACs, without the need of using more (space) resources than those used in the original Turing computation, as long as we are talking about bounded computations. In other words, computations done by the GPAC are as space-efficient as computations done in the context of Computable Analysis

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability
    corecore