337 research outputs found
Weak Singular Hybrid Automata
The framework of Hybrid automata, introduced by Alur, Courcourbetis,
Henzinger, and Ho, provides a formal modeling and analysis environment to
analyze the interaction between the discrete and the continuous parts of
cyber-physical systems. Hybrid automata can be considered as generalizations of
finite state automata augmented with a finite set of real-valued variables
whose dynamics in each state is governed by a system of ordinary differential
equations. Moreover, the discrete transitions of hybrid automata are guarded by
constraints over the values of these real-valued variables, and enable
discontinuous jumps in the evolution of these variables. Singular hybrid
automata are a subclass of hybrid automata where dynamics is specified by
state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed
that for even very restricted subclasses of singular hybrid automata, the
fundamental verification questions, like reachability and schedulability, are
undecidable. In this paper we present \emph{weak singular hybrid automata}
(WSHA), a previously unexplored subclass of singular hybrid automata, and show
the decidability (and the exact complexity) of various verification questions
for this class including reachability (NP-Complete) and LTL model-checking
(PSPACE-Complete). We further show that extending WSHA with a single
unrestricted clock or extending WSHA with unrestricted variable updates lead to
undecidability of reachability problem
Reachability problems for PAMs
Piecewise affine maps (PAMs) are frequently used as a reference model to show
the openness of the reachability questions in other systems. The reachability
problem for one-dimentional PAM is still open even if we define it with only
two intervals. As the main contribution of this paper we introduce new
techniques for solving reachability problems based on p-adic norms and weights
as well as showing decidability for two classes of maps. Then we show the
connections between topological properties for PAM's orbits, reachability
problems and representation of numbers in a rational base system. Finally we
show a particular instance where the uniform distribution of the original orbit
may not remain uniform or even dense after making regular shifts and taking a
fractional part in that sequence.Comment: 16 page
Метод расчета теплообмена излучением в топке осесимметричной конфигурации на основе уравнений для компонент суммарного вектора потока лучистой энергии. Инженерная методика
На основе системы уравнений первой части статьи, получены разностные уравнения квазиодномерного метода расчета теплообмена излучением в топке котла осесимметричной конфигурации. Записаны уравнения и разностные формулы метода инженерного расчета теплообмена излучением при наличии экранной сетки около поверхности горелки. Методика пригодна для использования в инженерных расчетах при определении оптимальной конфигурации топки и определении оптимального расстояния экранной сетки до поверхности горелки
The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems
A constant-rate multi-mode system is a hybrid system that can switch freely
among a finite set of modes, and whose dynamics is specified by a finite number
of real-valued variables with mode-dependent constant rates. Alur, Wojtczak,
and Trivedi have shown that reachability problems for constant-rate multi-mode
systems for open and convex safety sets can be solved in polynomial time. In
this paper, we study the reachability problem for non-convex state spaces and
show that this problem is in general undecidable. We recover decidability by
making certain assumptions about the safety set. We present a new algorithm to
solve this problem and compare its performance with the popular sampling based
algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion
Planning Library (OMPL).Comment: 26 page
Certainly Unsupervisable States
This paper proposes an abstraction method for compositional synthesis. Synthesis is a method to automatically compute a control program or supervisor that restricts the behaviour of a given system to ensure safety and liveness. Compositional synthesis uses repeated abstraction and simplification to combat the state-space explosion problem for large systems. The abstraction method proposed in this paper finds and removes the so-called certainly unsupervisable states. By removing these states at an early stage, the final state space can be reduced substantially. The paper describes an algorithm with cubic time complexity to compute the largest possible set of removable states. A practical example demonstrates the feasibility of the method to solve real-world problems
Quantitative Regular Expressions for Arrhythmia Detection Algorithms
Motivated by the problem of verifying the correctness of arrhythmia-detection
algorithms, we present a formalization of these algorithms in the language of
Quantitative Regular Expressions. QREs are a flexible formal language for
specifying complex numerical queries over data streams, with provable runtime
and memory consumption guarantees. The medical-device algorithms of interest
include peak detection (where a peak in a cardiac signal indicates a heartbeat)
and various discriminators, each of which uses a feature of the cardiac signal
to distinguish fatal from non-fatal arrhythmias. Expressing these algorithms'
desired output in current temporal logics, and implementing them via monitor
synthesis, is cumbersome, error-prone, computationally expensive, and sometimes
infeasible.
In contrast, we show that a range of peak detectors (in both the time and
wavelet domains) and various discriminators at the heart of today's
arrhythmia-detection devices are easily expressible in QREs. The fact that one
formalism (QREs) is used to describe the desired end-to-end operation of an
arrhythmia detector opens the way to formal analysis and rigorous testing of
these detectors' correctness and performance. Such analysis could alleviate the
regulatory burden on device developers when modifying their algorithms. The
performance of the peak-detection QREs is demonstrated by running them on real
patient data, on which they yield results on par with those provided by a
cardiologist.Comment: CMSB 2017: 15th Conference on Computational Methods for Systems
Biolog
Optimal Reachability in Divergent Weighted Timed Games
Weighted timed games are played by two players on a timed automaton equipped
with weights: one player wants to minimise the accumulated weight while
reaching a target, while the other has an opposite objective. Used in a
reactive synthesis perspective, this quantitative extension of timed games
allows one to measure the quality of controllers. Weighted timed games are
notoriously difficult and quickly undecidable, even when restricted to
non-negative weights. Decidability results exist for subclasses of one-clock
games, and for a subclass with non-negative weights defined by a semantical
restriction on the weights of cycles. In this work, we introduce the class of
divergent weighted timed games as a generalisation of this semantical
restriction to arbitrary weights. We show how to compute their optimal value,
yielding the first decidable class of weighted timed games with negative
weights and an arbitrary number of clocks. In addition, we prove that
divergence can be decided in polynomial space. Last, we prove that for untimed
games, this restriction yields a class of games for which the value can be
computed in polynomial time
Double Exponential Instability of Triangular Arbitrage Systems
If financial markets displayed the informational efficiency postulated in the
efficient markets hypothesis (EMH), arbitrage operations would be
self-extinguishing. The present paper considers arbitrage sequences in foreign
exchange (FX) markets, in which trading platforms and information are
fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that
sequences of triangular arbitrage operations in FX markets containing 4
currencies and trader-arbitrageurs tend to display periodicity or grow
exponentially rather than being self-extinguishing. This paper extends the
analysis to 5 or higher-order currency worlds. The key findings are that in a
5-currency world arbitrage sequences may also follow an exponential law as well
as display periodicity, but that in higher-order currency worlds a double
exponential law may additionally apply. There is an "inheritance of
instability" in the higher-order currency worlds. Profitable arbitrage
operations are thus endemic rather that displaying the self-extinguishing
properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and
Conclusion, added bibliohraphy reference
Asymptotic behaviour of random tridiagonal Markov chains in biological applications
Discrete-time discrete-state random Markov chains with a tridiagonal
generator are shown to have a random attractor consisting of singleton subsets,
essentially a random path, in the simplex of probability vectors. The proof
uses the Hilbert projection metric and the fact that the linear cocycle
generated by the Markov chain is a uniformly contractive mapping of the
positive cone into itself. The proof does not involve probabilistic properties
of the sample path and is thus equally valid in the nonautonomous deterministic
context of Markov chains with, say, periodically varying transitions
probabilities, in which case the attractor is a periodic path.Comment: 13 pages, 22 bibliography references, submitted to DCDS-B, added
references and minor correction
Turing machines can be efficiently simulated by the General Purpose Analog Computer
The Church-Turing thesis states that any sufficiently powerful computational
model which captures the notion of algorithm is computationally equivalent to
the Turing machine. This equivalence usually holds both at a computability
level and at a computational complexity level modulo polynomial reductions.
However, the situation is less clear in what concerns models of computation
using real numbers, and no analog of the Church-Turing thesis exists for this
case. Recently it was shown that some models of computation with real numbers
were equivalent from a computability perspective. In particular it was shown
that Shannon's General Purpose Analog Computer (GPAC) is equivalent to
Computable Analysis. However, little is known about what happens at a
computational complexity level. In this paper we shed some light on the
connections between this two models, from a computational complexity level, by
showing that, modulo polynomial reductions, computations of Turing machines can
be simulated by GPACs, without the need of using more (space) resources than
those used in the original Turing computation, as long as we are talking about
bounded computations. In other words, computations done by the GPAC are as
space-efficient as computations done in the context of Computable Analysis
- …
