29 research outputs found

    Highly-Efficient Photoreaction Using Microfluidic Device

    Get PDF
    We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions

    Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity.

    Get PDF
    CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections

    Actin depletion initiates events leading to granule secretion at the immunological synapse.

    Get PDF
    Cytotoxic T lymphocytes (CTLs) use polarized secretion to rapidly destroy virally infected and tumor cells. To understand the temporal relationships between key events leading to secretion, we used high-resolution 4D imaging. CTLs approached targets with actin-rich projections at the leading edge, creating an initially actin-enriched contact with rearward-flowing actin. Within 1 min, cortical actin reduced across the synapse, T cell receptors (TCRs) clustered centrally to form the central supramolecular activation cluster (cSMAC), and centrosome polarization began. Granules clustered around the moving centrosome within 2.5 min and reached the synapse after 6 min. TCR-bearing intracellular vesicles were delivered to the cSMAC as the centrosome docked. We found that the centrosome and granules were delivered to an area of membrane with reduced cortical actin density and phospholipid PIP2. These data resolve the temporal order of events during synapse maturation in 4D and reveal a critical role for actin depletion in regulating secretion.Funding was provided by the Wellcome Trust through Principal Research Fellowships (075880 and 103930) to G.M.G. and a Strategic Award (100140) to the Cambridge Institute for Medical Research (CIMR). A.T.R. is an NIH-OxCam scholar supported by funding to J.L.-S. from the Eunice Shriver National Institute of Child Health and Human Development.This is the final version. It was first published by Elsevier at http://www.cell.com/immunity/abstract/S1074-7613%2815%2900173-9

    Quercetin Enhances the Thioredoxin Production of Nasal Epithelial Cells In Vitro and In Vivo

    No full text
    Background: Thioredoxin (TRX) acts as both a scavenger of reactive oxygen species (ROS) and an immuno-modulator. Although quercetin has been shown to favorably modify allergic rhinitis (AR) symptoms, its influence on TRX production is not well defined. The present study was designed to examine whether quercetin could favorably modify AR symptoms via the TRX production of nasal epithelial cells in vitro and in vivo. Methods: Human nasal epithelial cells (HNEpCs) were stimulated with H2O2 in the presence of quercetin. TRX levels in 24-h culture supernatants were examined with ELISA. BALB/c male mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA every other day, beginning seven days after the final sensitization. The mice were orally administered quercetin once a day for five consecutive days, beginning seven days after the final sensitization. Nasal symptoms were assessed by counting the number of sneezes and nasal rubbing behaviors during a 10-min period immediately after the challenge. TRX levels in nasal lavage fluids obtained 6 h after the challenge were examined by ELISA. Results: Treatment with 1.0 nM quercetin increased H2O2-induced TRX levels. The oral administration of 20.0 mg/kg of quercetin significantly inhibited nasal symptoms after the challenge. The same dose of quercetin significantly increased TRX levels in nasal lavage fluids. Conclusions: Quercetin’s ability to increase TRX production may account, at least in part, for its clinical efficacy toward AR

    Evaluation for the Mixing Performance of a Microreactor with Inline Measurement

    No full text
    corecore