215 research outputs found

    Radiation from a charged particle-in-flight from a laminated medium to vacuum

    Full text link
    The radiation from a charged particle-in-flight from a semi-infinite laminated medium to vacuum and back,- from vacuum to the laminated medium, has been investigated. Expressions for the spectral-angular distribution of radiation energy in vacuum (at large distances from the boundary of laminated medium) were obtained for both the cases with no limitations on the amplitude and variation profile of the laminated medium permittivity. The results of appropriate numerical calculations are presented and possible applications of the obtained results are discussed.Comment: 8 pages, 6 figures, contribution to Proceedings of International Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi

    Typology of risks of territories of advanced development

    Get PDF
    The article deals with the one of the most difficult aspects of the implementation of public-private partnership (PPP) - risk management. That partnership is the answer to the solution of problems with the choice of an effective way of development of transport, social, communal and other infrastructure. The practice of using PPP forms is gaining popularity in the territory of Russia. The authors considers the matters of the Russian economy improvement by readjustment the existing risk management paradigm of a PPP. An integral part of highly professional risk management is the definition of management objects in the economic sphere. A number of controversial issues related to classifications of risks of PPP is raised in the article. Since the domestic theory has not yet solved the problem of clear and comprehensive risk identification in the implementation of projects based on PPP, it is necessary to develop such a classification is now becoming particularly relevant. Various available points of view on this issue are analyzed. The authors propose their position on the classification of risks for the territories of advanced development proceeding from the environment of their origin. The developed classification will help stimulate the PPP market from a practical point of view in different sectors. The modern advantages of using advanced development territories in the Russian Federation and recommended them as an organizational model of PPP are revealed. It should be noted that to date there is no single system of documents for the development of regional infrastructure, which causes a lot of uncertainties in the course of making a decision on this transaction

    Some features of electromagnetic field of charged particle revolving about dielectric ball

    Full text link
    A relativistic electron uniformly rotating along an equatorial orbit around a dielectric ball may generate Cherenkov radiation tens of times more intense as that in case of revolution of a particle in a continuous, infinite and transparent medium. The root-mean-square values of electric and magnetic field strengths of particle are practically not localized in the central part of the equatorial plane of ball and close to the poles of ball.Comment: 6 pages, 3 figures, contribution to Proceedings of International Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    Get PDF
    BACKGROUND: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. RESULTS: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. CONCLUSIONS: Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0283-2) contains supplementary material, which is available to authorized users

    Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

    Full text link
    The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability. Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation of this effect is given and a possible application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in the Journal of Physics: Conference Serie

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism.

    Get PDF
    BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches

    Morphology and microstructure evolution of gold nanostructures in the limited volume porous matrices

    Get PDF
    The modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures’ morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.3.1.5.1Ministry of Education and Science of the Russian Federation, Minobrnauka: К-2018-036, N 211Russian Foundation for Fundamental Investigations, RFFI: 19-32-50058European Commission, ECMinistry of Science and Technology, MOSTFunding: This research was funded by H2020-MSCA-RISE2017-778308-SPINMULTIFILM Project, the scientific– technical program, ‘Technology-SG’ [project number 3.1.5.1], Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» [№ К-2018-036], implemented by a governmental decree dated 16th of March 2013, N 211 and Russian Foundation for Fundamental Investigations [project number 19-32-50058].Acknowledgments: D.V.Y. greatly acknowledges the World Federation of Scientists National Scholarship Program. E.Yu.K., D.V.Y., V.D.B., and V.S. greatly acknowledge the European Union program Mobility Scheme for Targeted People-to-People-Contacts (MOST) for supporting research visits
    corecore