714 research outputs found

    The Place of United Nations In Secondary Education

    Get PDF

    Characterizing the LANDSAT Global Long-Term Data Record

    Get PDF
    The effects of global climate change are fast becoming politically, sociologically, and personally important: increasing storm frequency and intensity, lengthening cycles of drought and flood, expanding desertification and soil salinization. A vital asset in the analysis of climate change on a global basis is the 34-year record of Landsat imagery. In recognition of its increasing importance, a detailed analysis of the Landsat observation coverage within the US archive was commissioned. Results to date indicate some unexpected gaps in the US-held archive. Fortunately, throughout the Landsat program, data have been downlinked routinely to International Cooperator (IC) ground stations for archival, processing, and distribution. These IC data could be combined with the current US holdings to build a nearly global, annual observation record over this 34-year period. Today, we have inadequate information as to which scenes are available from which IC archives. Our best estimate is that there are over four million digital scenes in the IC archives, compared with the nearly two million scenes held in the US archive. This vast pool of Landsat observations needs to be accurately documented, via metadata, to determine the existence of complementary scenes and to characterize the potential scope of the global Landsat observation record. Of course, knowing the extent and completeness of the data record is but the first step. It will be necessary to assure that the data record is easy to use, internally consistent in terms of calibration and data format, and fully accessible in order to fully realize its potential

    Seasonal Ice Cycle at the Mars Phoenix Landing Site: 2. Postlanding CRISM and Ground Observations

    Get PDF
    The combination of ground observations from the Mars Phoenix Lander and orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provided a detailed view of the formation of late summer surface water ice at the landing site and surrounding regions. CRISM observations of the landing site during and immediately after Phoenix operations were analyzed to track the seasonal and diurnal ice cycles during the late spring to late summer, and a nonlinear mixing model was used to estimate grain sizes and relative abundances of water ice and dust. The surface around the Phoenix landing site was ice-free from late spring through midsummer, although transient patches of mobile ices were observed in an 85 m diameter crater to the northeast of the landing site. At the ∼10 km diameter Heimdal Crater, located ∼10 km east of the landing site, permanent patches of water ice were observed to brighten during the late spring and darken during the summer, possibly as fine-grained water ice that was cold trapped onto the ice during late spring sintered into larger grains or finally sublimated, exposing larger-grained ice. CRISM spectra first show evidence of widespread ice during the night at solar longitude (Ls) ∼ 109°, ∼9 sols before Phoenix’s Surface Stereo Imager detected it. CRISM spectra first show evidence of afternoon surface ice and water ice clouds after Ls ∼ 155°, after Phoenix operations ended

    Mojave remote sensing field experiment

    Get PDF
    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars

    Seasonal Ice Cycle at the Mars Phoenix Landing Site: 2. Postlanding CRISM and Ground Observations

    Get PDF
    The combination of ground observations from the Mars Phoenix Lander and orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provided a detailed view of the formation of late summer surface water ice at the landing site and surrounding regions. CRISM observations of the landing site during and immediately after Phoenix operations were analyzed to track the seasonal and diurnal ice cycles during the late spring to late summer, and a nonlinear mixing model was used to estimate grain sizes and relative abundances of water ice and dust. The surface around the Phoenix landing site was ice-free from late spring through midsummer, although transient patches of mobile ices were observed in an 85 m diameter crater to the northeast of the landing site. At the ∼10 km diameter Heimdal Crater, located ∼10 km east of the landing site, permanent patches of water ice were observed to brighten during the late spring and darken during the summer, possibly as fine-grained water ice that was cold trapped onto the ice during late spring sintered into larger grains or finally sublimated, exposing larger-grained ice. CRISM spectra first show evidence of widespread ice during the night at solar longitude (Ls) ∼ 109°, ∼9 sols before Phoenix’s Surface Stereo Imager detected it. CRISM spectra first show evidence of afternoon surface ice and water ice clouds after Ls ∼ 155°, after Phoenix operations ended

    Compositions of Subsurface Ices at the Mars Phoenix Landing Site

    Get PDF
    NASA\u27s Phoenix Lander uncovered two types of ice at its 2008 landing site on the northern plains of Mars: a brighter, slab-like ice that broke during Robotic Arm operations; and a darker icy deposit. Spectra from the Phoenix Surface Stereo Imager (SSI) are used to demonstrate that the brighter material consists of nearly pure water ice, which probably formed by migration and freezing of liquid water. The darker icy material consists of similar to 30 +/- 20 wt% ice, with the remainder composed of fine-grained soil, indicating that it probably formed as pore ice. These two types of ice represent two different emplacement mechanisms and periods of deposition

    Compositions of Subsurface Ices at the Mars Phoenix Landing Site

    Get PDF
    NASA\u27s Phoenix Lander uncovered two types of ice at its 2008 landing site on the northern plains of Mars: a brighter, slab-like ice that broke during Robotic Arm operations; and a darker icy deposit. Spectra from the Phoenix Surface Stereo Imager (SSI) are used to demonstrate that the brighter material consists of nearly pure water ice, which probably formed by migration and freezing of liquid water. The darker icy material consists of similar to 30 +/- 20 wt% ice, with the remainder composed of fine-grained soil, indicating that it probably formed as pore ice. These two types of ice represent two different emplacement mechanisms and periods of deposition

    Magellan: Preliminary description of Venus surface geologic units

    Get PDF
    Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units

    Concentrated Perchlorate at the Mars Phoenix Landing Site: Evidence for Thin Film Liquid Water on Mars

    Get PDF
    NASA\u27s Phoenix mission, which landed on the northern plains of Mars in 2008, returned evidence of the perchlorate anion distributed evenly throughout the soil column at the landing site. Here, we use spectral data from Phoenix\u27s Surface Stereo Imager to map the distribution of perchlorate salts at the Phoenix landing site, and find that perchlorate salt has been locally concentrated into subsurface patches, similar to salt patches that result from aqueous dissolution and redistribution on Earth. We propose that thin films of liquid water are responsible for translocating perchlorate from the surface to the subsurface, and for concentrating it in patches. The thin films are interpreted to result from melting of minor ice covers related to seasonal and long-term obliquity cycles

    Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

    Get PDF
    Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
    • …
    corecore