102 research outputs found

    Preparation and Characterisation of ε-CL-20 by Solvent Evaporation and Precipitation Methods

    Get PDF
    ε-CL-20 is prepared from raw CL-20 by solvent evaporation and precipitation methods. Experiments were also done using solvent evaporation coupled with in-situ ultrasonication method. Using precipitation method, ε-CL-20 is scaled up to 500 g batch. Raw CL-20 was assigned to α-CL-20. The chemical and polymorphic purity of prepared ε-CL-20 was found to be about 98 per cent and > 95 per cent, respectively. ε-CL-20 was obtained agglomeration free with well defined geometry in comparison with raw CL-20 and its crystal morphology is dominantly bi-pyramidal or lozenge crystal shapes. The obtained mean particle size of prepared ε-CL-20 by solvent evaporation method with and without in-situ ultrasonication and also by precipitation methods is about 30 μm - 40 μm, 150 μm - 200 μm and 150 μm - 300 μm, respectively. The measured true density of prepared ε-CL-20 by precipitation method with 100 g and 500 g batch scale using Helium gas pycnometer was 2.038 g/cm3 and 2.043 g/cm3, respectively. The lower value of calculated void percentage of ε-CL-20 (0.05-0.29%) indicate better crystal quality. Conclusively, prepared ε-CL20 has high true density with less percentage of voids, less total moisture content and free from agglomeration as compared with the starting raw CL-20 material.Defence Science Journal, 2012, 62(6), pp.390-398, DOI:http://dx.doi.org/10.14429/dsj.62.142

    Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses

    Get PDF
    A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins

    A Variant Allele in Varicella-Zoster Virus Glycoprotein B Selected during Production of the Varicella Vaccine Contributes to Its Attenuation

    Get PDF
    Attenuation of the live varicella Oka vaccine (vOka) has been attributed to mutations in the genome acquired during cell culture passage of pOka (parent strain); however, the precise mechanisms of attenuation remain unknown. Comparative sequence analyses of several vaccine batches showed that over 100 single-nucleotide polymorphisms (SNPs) are conserved across all vaccine batches; 6 SNPs are nearly fixed, suggesting that these SNPs are responsible for attenuation. By contrast, prior analysis of chimeric vOka and pOka recombinants indicates that loci other than these six SNPs contribute to attenuation. Here, we report that pOka consists of a heterogenous population of virus sequences with two nearly equally represented bases, guanine (G) or adenine (A), at nucleotide 2096 of the ORF31 coding sequence, which encodes glycoprotein B (gB) resulting in arginine (R) or glutamine (Q), respectively, at amino acid 699 of gB. By contrast, 2096A/699Q is dominant in vOka (.99.98%). gB699Q/gH/gL showed significantly less fusion activity than gB699R/gH/gL in a cell-based fusion assay. Recombinant pOka with gB669Q (rpOka_gB699Q) had a similar growth phenotype as vOka during lytic infection in cell culture including human primary skin cells; however, rpOka_gB699R showed a growth phenotype similar to pOka. rpOka_gB699R entered neurons from axonal terminals more efficiently than rpOka_gB699Q in the presence of cell membrane-derived vesicles containing gB. Strikingly, when a mixture of pOka with both alleles equally represented was used to infect human neurons from axon terminals, pOka with gB699R was dominant for virus entry. These results identify a variant allele in gB that contributes to attenuation of vOka. IMPORTANCE The live-attenuated varicella vaccine has reduced the burden of chickenpox. Despite its development in 1974, the molecular basis for its attenuation is still not well understood. Since the live-attenuated varicella vaccine is the only licensed human herpesvirus vaccine that prevents primary disease, it is important to understand the mechanism for its attenuation. Here we identify that a variant allele in glycoprotein B (gB) selected during generation of the varicella vaccine contributes to its attenuation. This variant is impaired for fusion, virus entry into neurons from nerve terminals, and replication in human skin cells. Identification of a variant allele in gB, one of the essential herpesvirus core genes, that contributes to its attenuation may provide insights that assist in the development of other herpesvirus vaccines

    TEM observations of cytoskeletal evolution in CNS axons

    Get PDF
    Experimental studies of the Nobel Prize Scientists mentioned earlier show how such receptors prefer to be on lipid rafts. The latter are zones of the cell membrane of higher thickness, where lipids are more straight and, hence, in the so-called ordered phase

    Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination

    Get PDF
    Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired

    Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling

    Get PDF
    : The patterning and ossification of the mammalian skeleton requires the coordinated actions of both intrinsic bone morphogens and extrinsic neurovascular signals, which function in a temporal and spatial fashion to control mesenchymal progenitor cell (MPC) fate. Here, we show the genetic inhibition of tropomyosin receptor kinase A (TrkA) sensory nerve innervation of the developing cranium results in premature calvarial suture closure, associated with a decrease in suture MPC proliferation and increased mineralization. In vitro, axons from peripheral afferent neurons derived from dorsal root ganglions (DRGs) of wild-type mice induce MPC proliferation in a spatially restricted manner via a soluble factor when cocultured in microfluidic chambers. Comparative spatial transcriptomic analysis of the cranial sutures in vivo confirmed a positive association between sensory axons and proliferative MPCs. SpatialTime analysis across the developing suture revealed regional-specific alterations in bone morphogenetic protein (BMP) and TGF-β signaling pathway transcripts in response to TrkA inhibition. RNA sequencing of DRG cell bodies, following direct, axonal coculture with MPCs, confirmed the alterations in BMP/TGF-β signaling pathway transcripts. Among these, the BMP inhibitor follistatin-like 1 (FSTL1) replicated key features of the neural-to-bone influence, including mitogenic and anti-osteogenic effects via the inhibition of BMP/TGF-β signaling. Taken together, our results demonstrate that sensory nerve-derived signals, including FSTL1, function to coordinate cranial bone patterning by regulating MPC proliferation and differentiation in the suture mesenchyme

    Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene expression during reactivation from neuronal latency

    Get PDF
    Varicella-zoster virus (VZV) establishes lifelong neuronal latency in most humans world-wide, reactivating in one-third to cause herpes zoster and occasionally chronic pain. How VZV establishes, maintains and reactivates from latency is largely unknown. VZV transcription during latency is restricted to the latency-associated transcript (VLT) and RNA 63 (encoding ORF63) in naturally VZV-infected human trigeminal ganglia (TG). While significantly more abundant, VLT levels positively correlated with RNA 63 suggesting co-regulated transcription during latency. Here, we identify VLT-ORF63 fusion transcripts and confirm VLT-ORF63, but not RNA 63, expression in human TG neurons. During in vitro latency, VLT is transcribed, whereas VLT-ORF63 expression is induced by reactivation stimuli. One isoform of VLT-ORF63, encoding a fusion protein combining VLT and ORF63 proteins, induces broad viral gene transcription. Collectively, our findings show that VZV expresses a unique set of VLT-ORF63 transcripts, potentially involved in the transition from latency to lytic VZV infection

    Cytisus scoparius link - A natural antioxidant

    Get PDF
    BACKGROUND: Recent investigations have shown that the antioxidant properties of plants could be correlated with oxidative stress defense and different human diseases. In this respect flavonoids and other polyphenolic compounds have gained the greatest attention. The plant Cytisus scoparius contains the main constituent of flavone and flavonals. The present study was undertaken to evaluate the in vitro antioxidant activities of extract of aerial part of Cytisus scoparius. METHODS: The plant extract was tested for DPPH (1, 1-diphenyl, 2-picryl hydrazyl) radical scavenging, nitric oxide radical scavenging, superoxide anion radical scavenging, hydroxyl radical scavenging, antilipid peroxidation assay, reducing power and total phenol content. RESULTS: The extract exhibited scavenging potential with IC(50 )value of 1.5 μg/ml, 116.0 μg/ml and 4.7 μg/ml for DPPH, nitric oxide and superoxide anion radicals. The values were found to lesser than those of vitamin C, rutin, and curcumin, as standards. The extract showed 50% protection at the dose of 104.0 μg/ml in lipid peroxidation induced by Fe(2+)/ ascorbate system in rat liver microsomal preparation. There is decrease in hydroxyl radical generation with IC(50 )value of 27.0 μg/ml when compared with standard vitamin E. The reducing power of the extract depends on the amount of extract. A significant amount of polyphenols could be detected by the equivalent to 0.0589 μg of pyrocatechol from 1 mg of extract. CONCLUSION: The results obtained in the present study indicate that hydro alcoholic extract of aerial part of Cytisus scoparius is a potential source of natural antioxidants
    corecore