46 research outputs found

    Experimental investigations of electrodeposited Zn-Ni, Zn-Co, and Ni-Cr-Co-based novel coatings on AA7075 substrate to ameliorate the mechanical, abrasion, morphological, and corrosion properties for automotive applications

    Get PDF
    The aluminum (Al) alloy AA7075 is widely used in various industries due to its high strength-to-weight ratio, which is comparable and replaceable to steel in many applications. However, it has poor resistance to wear and corrosion compared to other Al alloys. The conventional pressure die coating with Cr and cadmium has led to premature failure while the load is applied. It is indeed to develop a novel coating method to improve the mechanical, wear, and corrosion properties of AA7075 Al alloy. In the present investigation, the binary and ternary metals such as zinc-nickel (Zn-Ni), zinc-cobalt (Zn-Co), and nickel-chromium-cobalt (Ni-Cr-Co) are electroplated on the substrate material (AA7075). In order to ensure optimal coating adhesion, the surface of the substrate material was pre-treated with laser surface treatment (LST). The mechanical and corrosion studies have been carried out on the uncoated and coated materials. It is observed from the findings that the ternary coating has higher wear resistance than the binary-coated material. The ternary coating has 64% higher resistance in the non-heat-treated status and 67% higher resistance in the heat-treated condition compared to the uncoated specimens. The tensile strength (MPa) of Ni-Cr-Co on AA7075 pressure die casting (PDC) is higher than the other deposits (582.24 of Ni-Cr-Co > 566.07 of Zn-Co > 560.05 of Zn-Ni > 553.64 of uncoated condition). The presence of a crystalline structure with the high alignment of Co and Ni atoms could significantly improve the corrosion resistance of Ni-Cr-Co coatings on AA 7075 PDC substrates when compared to binary coatings. The scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy findings on the coated materials have been corroborated with the analyses on mechanical and corrosion properties. The XRD analysis of the Zn-Ni binary coating has reported that the diffraction peaks of γ-NiZn3 (831), γ-Ni2Zn11 (330), and 631 with 2θ values 38, 43, and 73° are confirming the presence of Zn-Ni binary deposit on AA7075 PDC substrate. The XRD pattern of Zn-Co-coated material has revealed that the presence of three strong peaks such as Zn (110), Co (111), and CoZn (211) and two feeble peaks such as ϵ-CoZn3 (220) and ϵ-CoZn3 (301) are clearly visible. The XRD pattern of Ni-Cr-Co ternary coating has exhibited that the Ni-Cr-Co ternary deposit is a solid solution with a body-centered cubic structure due to the formation peaks at lattice plane such as (110), (220), and (210) with a crystal lattice constant of 2.88 A°. The SEM image for both the binary- and ternary-coated materials has exhibited that the deposited surface has displayed many shallow pits due to hitting by progressive particles. The SEM image has illustrated the presence of Zn-Ni atoms with smaller globular structure. The surface morphology of binary Zn-Co coating on the PDC AA7075 substrate has unveiled the evenly distributed dot-like structure and submerged Co particles in the galaxy of Zn atoms. To understand the effectiveness of bonding by laser texturing, cross-section SEM has been carried out which furthermore revealed the effective adhesion of Ni-Cr-Co on AA7075 PDC; this could also be the reason for the enhancement of microhardness, wear, and corrosion resistance of the said coating. © 2023 the author(s), published by De Gruyter

    Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles

    Get PDF
    The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications

    New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum

    Get PDF
    Background: The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs. Methods: A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay. Results: The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration. Conclusion: The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.info:eu-repo/semantics/publishedVersio

    Improved photocatalytic efficiency of rare earth metal-incorporated magnesium oxide nano-hexagonal sheets for the degradation of Ciprofloxacin and Methylene Blue dye under visible light irradiation

    No full text
    Researchers worldwide are working hard to develop nanoparticles that can be used for the photocatalytic degradation of dangerous substances and antibiotics. In this report, we present a study on how to make yttrium-incorporated magnesium oxide nanoparticles using hydrothermal and calcination methods. These particles measure around 50 nm and have excellent photocatalytic properties. We analyzed them using various physiochemical techniques like X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy with EDAX, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultra-violet diffused reflectance spectroscopy. The nanohexagons created in this study showed reduced band gap energy from 4.8 eV to 3.8 eV when yttrium was incorporated into MgO nanohexagons resulting in an unusual increase in light absorption within the visible light region. Experimental reports show these synthesized nanoparticles could degrade about 66.5 % antibiotic Ciprofloxacin (CIP) and 79 % Methylene Blue (MB) dye respectively with .O2– playing a significant role at every step during the degradation process. This study demonstrates that these synthesized nanohexagons have practical applications as promising photocatalysts for treating toxic contaminants found in industrial effluents

    Effect of preparation on magnetic properties of Mn-Zn ferrite

    No full text
    289-294Mixed ferrites belonging to the type Mn0.9Zn0.1Fe2O4 have been prepared by the double sintering method and by the chemical co-precipitation for comparing their magnetic properties. Sintered and precipitated ferrites exhibit different characteristics, especially in their magnetic properties like magnetization (Ms), coercive field (Hc) and Curie temperature (Tc). The sintered particles were size reduced in order to compare with the nanosized co-precipitated particles. The effect of grinding has also been studied. Particles have been collected at regular intervals of grinding and their properties have been studied. The increase in the coercive field has been recorded by a hysteresis curve tracer confirming size reduction. X-ray diffraction studies confirmed the structure and consequent size reduction

    Effect of preparation on magnetic properties of Mn-Zn ferrite

    No full text
    Mixed ferrites belonging to the type Mn0.9Zn0.1Fe2O4 have been prepared by the double sintering method and by the chemical co-precipitation for comparing their magnetic properties. Sintered and precipitated ferrites exhibit different characteristics, especially in their magnetic properties like magnetization (Ms), coercive field (Hc) and Curie temperature (Tc). The sintered particles were size reduced in order to compare with the nanosized co-precipitated particles. The effect of grinding has also been studied. Particles have been collected at regular intervals of grinding and their properties have been studied. The increase in the coercive field has been recorded by a hysteresis curve tracer confirming size reduction. X-ray diffraction studies confirmed the structure and consequent size reductionCochin University of Science and TechnologyIndian Journal of Engineering & Materials Sciences Vol. 11, August 2004, pp. 289-29
    corecore