11 research outputs found

    Integrated Management of Urban Wastewater Systems: Exploring Reliable, Resilient and Sustainable Strategies for an Uncertain Future

    Get PDF
    The integration of the different parts of the urban wastewater system (i.e. catchment, sewer network, wastewater treatment plant and receiving waters) permits the representation of their intrinsic interactions and complexities, allowing for a more sophisticated management of stormwater and wastewater interventions. Emerging threats (e.g. climate change, population growth) and their associated future uncertainties pose an unprecedented challenge to the performance of the integrated urban wastewater system (IUWWS), which is expected to be reliable, resilient and sustainable regardless of future conditions. The aim of this thesis is to understand the performance and planning implications of catchment-scale infrastructure strategies for the improved management of the IUWWS in the face of future uncertainty. To this end, green and grey infrastructure strategies are proposed and assessed in the context of two different IUWWS models. Future uncertainties are represented by means of four future scenarios that account for a rich and ample variety of internal and external threats in the horizon 2050. A novel regret-based method is employed in order to: 1) assess the performance of the proposed strategies for multiple objectives (environmental, economic and social) and identify their main trade-offs; 2) evaluate the robustness of the proposed strategies for reliability, resilience and sustainability across future scenarios; 3) explore the dynamic compliance and adaptability of the strategies along pathways of transient scenarios. The obtained results demonstrate that end-of-pipe grey infrastructure strategies are subject to significant trade-offs that compromise their performance downstream, in spite of addressing localised issues. These operational trade-offs, along with the cost of grey schemes, importantly constrain their robustness to promote sustainability in the future, even in situations where these can become robust for reliability and resilience. In contrast, green infrastructure retrofits prove to be more consistent in their performance, delivering a wide range of performance benefits at a moderate cost. This translates into higher levels of robustness for reliability, resilience and sustainability across future scenarios when compared to their grey counterparts. Hybrid strategies combining grey and green interventions offer additional potential for robustness as they can ameliorate the unintended impacts and consequences of end-of-pipe solutions. Finally, it is also demonstrated that the robust performance of green retrofit strategies reconciles (and can help grey infrastructure alternatives to reconcile) compliance requirements in the short-term with those associated with the need to adapt to uncertain challenges in the long-term.EPSRC and Nortumbrian Water Ltd

    An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society 2015 after peer review and technical editing by the publisher. To access the final edited and published work see 10.1021/es506144f. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.The robustness of a range of watershed-scale “green” and “gray” drainage strategies in the future is explored through comprehensive modelling of a fully integrated urban wastewater system case. Four socio-economic future scenarios, defined by parameters affecting the environmental performance of the system, are proposed to account for the uncertain variability of conditions in the year 2050. A regret-based approach is applied to assess the relative performance of strategies in multiple impact categories (environmental, economic and social) as well as to evaluate their robustness across future scenarios. The concept of regret proves useful in identifying performance trade-offs and recognizing states of the world most critical to decisions. The study highlights the robustness of green strategies (particularly rain gardens, resulting in half the regret of most options) over end-of-pipe gray alternatives (surface water separation or sewer and storage rehabilitation), which may be costly (on average, 25% of the total regret of these options) and tend to focus on sewer flooding and CSO alleviation while compromising on downstream system performance (this accounts for around 50% of their total regret). Trade-offs and scenario regrets observed in the analysis suggest that the combination of green and gray strategies may still offer further potential for robustness.Engineering & Physical Sciences Research Council (EPSRC)Northumbrian Water Ltd

    Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this record.The dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.563Reliability, resilience and sustainability are key goals of any urban drainage system. However, only a few studies have recently focused on measuring, operationalizing and comparing such concepts in a world of deep uncertainty. In this study, these key concepts are defined and quantified for a number of gray, green and hybrid strategies, aimed at improving the capacity issues of an existing integrated urban wastewater system. These interventions are investigated by means of a regret-based approach, which evaluates the robustness (that is the ability to perform well under deep uncertainty conditions) of each strategy in terms of the three qualities through integration of multiple objectives (i.e. sewer flooding, river water quality, combined sewer overflows, river flooding, greenhouse gas emissions, cost and acceptability) across four different future scenarios. The results indicate that strategies found to be robust in terms of sustainability were typically also robust for resilience and reliability across future scenarios. However, strategies found to be robust in terms of their resilience and, in particular, for reliability did not guarantee robustness for sustainability. Conventional gray infrastructure strategies were found to lack robustness in terms of sustainability due to their unbalanced economic, environmental and social performance. Such limitations were overcome, however, by implementing hybrid solutions that combine green retrofits and gray rehabilitation solutions.This study was funded by the UK Engineering and Physical Sciences Research Council through STREAM (EP/G037094/1) with Northumbrian Water Limited, BRIM (EP/N010329/1) and the final author’s fellowship Safe & SuRe (EP/K006924/1)

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty (dataset)

    No full text
    The article associated with this dataset is located in ORE at: http://hdl.handle.net/10871/33480This is the dataset used for the Casal-Campos et al. (2018) article "Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty" published in Environmental Science and Technology (ES&T).UK Engineering and Physical Sciences Research Council through STREAM (EP/G037094/1)UK Engineering and Physical Sciences Research Council through BRIM (EP/N010329/1)UK Engineering and Physical Sciences Research Council through Prof David Butler's EPSRC fellowship called Safe & SuRe (EP/K006924/1

    Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty

    No full text
    Reliability, resilience and sustainability are key goals of any urban drainage system. However, only a few studies have recently focused on measuring, operationalizing and comparing such concepts in a world of deep uncertainty. In this study, these key concepts are defined and quantified for a number of gray, green and hybrid strategies, aimed at improving the capacity issues of an existing integrated urban wastewater system. These interventions are investigated by means of a regret-based approach, which evaluates the robustness (that is the ability to perform well under deep uncertainty conditions) of each strategy in terms of the three qualities through integration of multiple objectives (i.e., sewer flooding, river water quality, combined sewer overflows, river flooding, greenhouse gas emissions, cost and acceptability) across four different future scenarios. The results indicate that strategies found to be robust in terms of sustainability were typically also robust for resilience and reliability across future scenarios. However, strategies found to be robust in terms of their resilience and, in particular, for reliability did not guarantee robustness for sustainability. Conventional gray infrastructure strategies were found to lack robustness in terms of sustainability due to their unbalanced economic, environmental and social performance. Such limitations were overcome, however, by implementing hybrid solutions that combine green retrofits and gray rehabilitation solutions
    corecore