17 research outputs found
Geochemical and micro-textural fingerprints of boiling in pyrite
© 2018 Elsevier Ltd The chemical composition, textures and mineral associations of pyrite provide key information that help elucidate the evolution of hydrothermal systems. However, linking the compositional and micro-textural features of pyrite with a specific physico-chemical process, e.g., boiling versus non-boiling, remains elusive and challenging. In this study we examine pyrite geochemical and micro-textural features and relate these results to pyrite-forming processes at the active Cerro Pabellón Geothermal System (CPGS) in the Altiplano of the northern Chile. We integrate electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data with micro-textural observations of pyrite and associated gangue minerals recovered from a ∼500 m long drill core that crosscuts the argillic, sub-propylitic and propylitic alteration zones of the CPGS. Additionally, we carried out a Principal Component Analysis (PCA) in order to inspect and un
Marlowe\u27s religious attitude
Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvospinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.MSI Millennium Nucleus for Metal Tracing Along Subduction
NC13006
Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses
Abstract Iron oxide-copper-gold (IOCG) deposits are a globally important source of copper, gold and critical commodities. Despite their relevance, IOCG deposits remain an ill-defined clan, with a range of characteristics that has complicated development of the general genetic model. Here we focus on the Candelaria IOCG deposit in Chile and reveal that by using micro-textural and compositional variations in actinolite, a common alteration mineral found in many IOCG deposits, we can constrain the evolution of these systems. We demonstrate that Candelaria formed by the superposition of at least two pulses of mineralization with a late Cu-rich event overprinting and superimposed over an early, and probably higher temperature, iron oxide-apatite (IOA) mineralization event. These distinct pulses were likely caused by episodic injections of magmatic-hydrothermal fluids from crystallizing magmas at depth. Our data provide empirical evidence of grain-to-deposit scale compositional and potentially temperature changes in an IOCG system. The results support the use of actinolite chemistry as a novel approach to understand the formation of IOCG deposits and a potential tool for vectoring in exploration
Formation of massive iron deposits linked to explosive volcanic eruptions
Abstract The genetic link between magmas and ore deposit formation is well documented by studies of fossil hydrothermal systems associated with magmatic intrusions at depth. However, the role of explosive volcanic processes as active agents of mineralization remains unexplored owing to the fact that metals and volatiles are released into the atmosphere during the eruption of arc volcanoes. Here, we draw on observations of the uniquely preserved El Laco iron deposit in the Central Andes to shed new light on the metallogenic role of explosive volcanism that operates on a global scale. The massive magnetite (Fe3O4) ore bodies at El Laco have surface structures remarkably similar to basaltic lava flows, stimulating controversy about their origin. A long-standing debate has endured because all proposed models were constructed based exclusively on samples collected from surface outcrops representing the uppermost and most altered portion of the deposit. We overcome this sampling bias by studying samples retrieved from several drill cores and surface outcrops. Our results reveal complex lithological, textural and geochemical variations characterized by magmatic-like features and, most notably, a systematic increase in titanium concentration of magnetite with depth that account for an evolving system transitioning from purely magmatic to magmatic-hydrothermal conditions. We conclude that El Laco, and similar deposits worldwide, formed by a synergistic combination of common magmatic processes enhanced during the evolution of caldera-related explosive volcanic systems
Mineralogy of the HSE in the subcontinental lithospheric mantle - An interpretive review
The highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pt, Pd, Re, Au) exist in solid solution in accessory base-metal sulfides (BMS) as well as nano-to-micron scale minerals in rocks of the subcontinental lithospheric mantle (SCLM). The latter include platinum-group minerals (PGM) and gold minerals, which may vary widely in morphology, composition and distribution. The PGM form isolated grains often associated with larger BMS hosted in residual olivine, located at interstices in between peridotite-forming minerals or more commonly in association with metasomatic minerals (pyroxenes, carbonates, phosphates) and silicate glasses in some peridotite xenoliths. The PGM found inside residual olivine are mainly Os-, Ir- and Ru-rich sulfides and alloys. In contrast, those associated with metasomatic minerals or silicate glasses of peridotite xenoliths consist of Pt, Pd, and Rh bonded with semimetals like As, Te, Bi, and Sn. Nanoscale observations on natural samples along with the results of recent experiments indicate that nucleation of PGM is mainly related with the uptake of HSE by nanoparticles, nanominerals or nanomelts at high temperature (> 900 °C) in both silicate and/or sulfide melts, regardless of the residual or metasomatic origin of their host minerals. A similar interpretation can be assumed for gold minerals. Our observations highlight that nanoscale processes play an important role on the ore-forming potential of primitive mantle-derived magmas parental to magmatic-hydrothermal deposits enriched in noble metals. The metal inventory in these magmas could be related with the physical incorporation of HSE-bearing nanoparticles or nanomelts during processes of partial melting of mantle peridotite and melt migration from the mantle to overlying continental crust
Mineralogy of the HSE in the subcontinental lithospheric mantle —An interpretive review
The highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pt, Pd, Re, Au) exist in solid solution in accessory base-metal sulfides (BMS) as well as nano-to-micron scale minerals in rocks of the subcontinental lithospheric mantle (SCLM). The latter include platinum-group minerals (PGM) and gold minerals, which may vary widely in morphology, composition and distribution. The PGM form isolated grains often associated with larger BMS hosted in residual olivine, located at interstices in between peridotite-forming minerals or more commonly in association with metasomatic minerals (pyroxenes, carbonates, phosphates) and silicate glasses in some peridotite xenoliths. The PGM found inside residual olivine are mainly Os-, Ir- and Ru-rich sulfides and alloys. In contrast, those associated with metasomatic minerals or silicate glasses of peridotite xenoliths consist of Pt, Pd, and Rh bonded with semimetals like As, Te, Bi, and Sn. Nanoscale observations on natural samples along with the results of recent experiments indicate that nucleation of PGM is mainly related with the uptake of HSE by nanoparticles, nanominerals or nanomelts at high temperature (> 900 °C) in both silicate and/or sulfide melts, regardless of the residual or metasomatic origin of their host minerals. A similar interpretation can be assumed for gold minerals. Our observations highlight that nanoscale processes play an important role on the ore-forming potential of primitive mantle-derived magmas parental to magmatic-hydrothermal deposits enriched in noble metals. The metal inventory in these magmas could be related with the physical incorporation of HSE-bearing nanoparticles or nanomelts during processes of partial melting of mantle peridotite and melt migration from the mantle to overlying continental crust.We thank Laurie Reisberg, Hannah Hughes and an anonymous referee for their criticism, which greatly improved the quality of our manuscript. We also are indebted to Prof. Sisir K. Mondal for Editorial handling of this work and their constructive edits. This research was supported by Spanish projects: RTI2018-099157-A-I00 , CGL2015-65824-P and CGL2016-81085-R granted by the “ Ministerio de Ciencia, Innovación y Universidades ” and Ministerio de Economía y Competitividad ” (MINECO), respectively. Additional funding was provided by the Ramón y Cajal Fellowship RYC-2015-17596 and Junta de Andalucía project B-RNM-189-UGR18 to JMGJ, and the BES-2017-079949 fellowship to ES. This work was also supported by the Mexican research programs CONACYT-Ciencia Básica ( A1-S-14574 ) and UNAM-PAPIIT grant IA-101419 awarded to VC. A. Jiménez-Franco also acknowledge a postdoctoral grant (CVU 350809 ) from the National Council on Science and Technology (CONACYT) of Mexico. Research grants, infrastructures and human resources leading to this research have benefited from funding by the European Social Fund and the European Regional Development Fund. We are grateful to Prof. José Jorge Aranda Gómez who provided the xenolith samples of La Breña (Durango Volcanic Field, Central Mexico). María del Mar Abad, Isabel Sánchez Almazo and Rocío Márquez Crespo (CIC, University of Granada) are acknowledged for her assistance with HRTEM, and HR-SEM and FE-SEM analysis, respectively. We are also indebted to Miguel Ángel Hidalgo Laguna from CIC of University of Granada and Xavier Llovet from the Centres Científics i Tecnològics of the Universitat of Barcelona (CCiTUB) for their careful help with EMPA