8 research outputs found

    Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

    No full text
    JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, sin2θ12\sin^2 \theta_{12}, and sin2θ13\sin^2 \theta_{13} oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, and sin2θ12\sin^2 \theta_{12} oscillation parameters will be determined to better than 0.5% precision in six years of data collection, which represents approximately an order of magnitude improvement over existing constraints

    JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo

    No full text
    We discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande

    Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

    No full text

    Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

    No full text
    JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, sin2θ12\sin^2 \theta_{12}, and sin2θ13\sin^2 \theta_{13} oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, and sin2θ12\sin^2 \theta_{12} oscillation parameters will be determined to better than 0.5% precision in six years of data collection, which represents approximately an order of magnitude improvement over existing constraints

    Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

    No full text
    JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, sin2θ12\sin^2 \theta_{12}, and sin2θ13\sin^2 \theta_{13} oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, and sin2θ12\sin^2 \theta_{12} oscillation parameters will be determined to better than 0.5% precision in six years of data collection, which represents approximately an order of magnitude improvement over existing constraints

    Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO

    No full text
    JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, sin2θ12\sin^2 \theta_{12}, and sin2θ13\sin^2 \theta_{13} oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm312\Delta m^2_{31}, Δm212\Delta m^2_{21}, and sin2θ12\sin^2 \theta_{12} oscillation parameters will be determined to better than 0.5% precision in six years of data collection, which represents approximately an order of magnitude improvement over existing constraints

    Sub-percent precision measurement of neutrino oscillation parameters with JUNO*

    No full text
    JUNO is a multi-purpose neutrino observatory under construction in the south of China. This publication presents new sensitivity estimates for the measurement of the Δm312 \Delta m^2_{31} , Δm212 \Delta m^2_{21} , sin2θ12 \sin^2 \theta_{12} , and sin2θ13 \sin^2 \theta_{13} oscillation parameters using reactor antineutrinos, which is one of the primary physics goals of the experiment. The sensitivities are obtained using the best knowledge available to date on the location and overburden of the experimental site, the nuclear reactors in the surrounding area and beyond, the detector response uncertainties, and the reactor antineutrino spectral shape constraints expected from the TAO satellite detector. It is found that the Δm212 \Delta m^2_{21} and sin2θ12 \sin^2 \theta_{12} oscillation parameters will be determined to 0.5% precision or better in six years of data collection. In the same period, the Δm312 \Delta m^2_{31} parameter will be determined to about 0.20.2% precision for each mass ordering hypothesis. The new precision represents approximately an order of magnitude improvement over existing constraints for these three parameters

    JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo

    Get PDF
    International audienceWe discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande
    corecore