186 research outputs found

    Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett Syndrome

    Get PDF
    Objective: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs) play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. Methods: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life) and from Rett syndrome patients (2 to 19 years of life), by immunoblot analysis. Results: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. Conclusions: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective

    Technical Aspects of Coenzyme Q<sub>10</sub> Analysis:Validation of a New HPLC-ED Method

    Get PDF
    The biochemical measurement of the CoQ status in different tissues can be performed using HPLC with electrochemical detection (ED). Because the production of the electrochemical cells used with the Coulochem series detectors was discontinued, we aimed to standardize a new HPLC-ED method with new equipment. We report all technical aspects, troubleshooting and its performance in different biological samples, including plasma, skeletal muscle homogenates, urine and cultured skin fibroblasts. Analytical variables (intra- and inter-assay precision, linearity, analytical measurement range, limit of quantification, limit of detection and accuracy) were validated in calibrators and plasma samples and displayed adequate results. The comparison of the results of a new ERNDIM external quality control (EQC) scheme for the plasma CoQ determination between HPLC-ED (Lab 1) and LC-MS/MS (Lab 2) methods shows that the results of the latter were slightly higher in most cases, although a good consistency was generally observed. In conclusion, the new method reported here showed a good analytical performance. The global quality of the EQC scheme results among different participants can be improved with the contribution of more laboratories

    Mutations in the urocanase gene UROC1 are associated with urocanic aciduria

    Full text link
    [EN] Urocanase is an enzyme in the histidine pathway encoded by the UROC1 gene. This report describes the first putative mutations, p. L70P and p.R450C, in the coding region of the UROC1 gene in a girl with urocanic aciduria presenting with mental retardation and intermittent ataxia. Computed (in silico) predictions, protein expression studies and enzyme activity assays suggest that none of the mutations can produce a fully functional enzyme. The p. L70P substitution, which probably implies the disruption of an alpha-helix in the N-terminus, would alter its properties and therefore, its function. The p.R450C change would render impossible any interaction between urocanase and its substrate and would loss its enzyme activity. Consequently, these studies suggest that both mutations could alter the correct activity of urocanase, which would explain the clinical and biochemical findings described in this patient.We are grateful to the patient for her kind collaboration. We are indebted to Dr C Marco-Marín for the in silico structural studies. CIBERER is an initiative of the Instituto de Salud Carlos III. This work was supported by grants from the Fondo de Investigación Sanitaria (PI051318 and PI070548).Espinós-Armero, CÁ.; Pineda, M.; Martínez-Rubio, D.; Aída Ormazabal; María Antonia Vilaseca; Leo J. M. Spaapen; Palau, F.... (2009). Mutations in the urocanase gene UROC1 are associated with urocanic aciduria. Journal of Medical Genetics. 46(6):407-411. https://doi.org/10.1136/jmg.2008.06063240741146

    Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes

    Get PDF
    OBJECTIVE: A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. METHODS: To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C). RESULTS: The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. CONCLUSIONS: Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes

    Calorie restriction rescues mitochondrial dysfunction in Adck2-Deficient skeletal muscle

    Get PDF
    ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.This work was supported by Junta de Andalucía grant BIO-177, the Instituto de Salud Carlos III FIS grant FIS PI20/00541, CIBERER (U729)-ISCIII, the FEDER Funding Program from the European Union and the Spanish Ministry of Science, Innovation and Universities grant RED2018-102576-T. This work was supported by the Spanish Ministry of Education, Culture and Sports through fellowship FPU16/03264 to JH-C, and the Association Française contre les Myopathies (AFM) through fellowship grant #22450 to CV-G. This work was funded in part by the Intramural Research Program of the National Institute on Aging, NIH. This research was also supported by the Instituto de Salud Carlos III (PI19/01310) (Co-funded by the European Union) and by the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (2017: SGR 1428) and the CERCA

    Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency

    Get PDF
    PMCID: PMC3983946.-- et al.[Background]: COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q10 (CoQ10). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ10 deficiency. [Methods]: A complete molecular and biochemical characterisation of the patient's fibroblasts and of a yeast model were performed. [Results]: The study found reduced COQ4 expression (48% of controls), CoQ10 content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ10 to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ10. Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ10 biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ10 supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. [Conclusion]: Mutations of COQ4 should be searched for in patients with CoQ10 deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ10 deficiency, as they could benefit from supplementation.This work was supported by Telethon Italy grant no GGP09207, CARIPARO foundation, the Spanish Ministerio de Sanidad (FIS) grant no PI 08/0500, University of Padova grant no 2010-CPDA102953, Italian Ministry of Health grant no GR-2009-1578914, National Institute of Health grant nos 1R01HD057543-01 and HD 32062, and Cariplo Foundation grant no 2007.5197.Peer reviewe

    Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease

    Get PDF
    Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression

    Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy

    Get PDF
    Oxidative phosphorylation dysfunction has been found in many different disorders. This biochemical pathway depends on mitochondrial protein synthesis. Thus, mutations in components of the mitochondrial translation system can be responsible for some of these pathologies. We identified a new homozygous missense mutation in the mitochondrial translation elongation factor Ts gene in a patient suffering from slowly progressive childhood ataxia and hypertrophic cardiomyopathy. Using cell, biochemical and molecular-genetic protocols, we confirm it as the etiologic factor of this phenotype. Moreover, as an important functional confirmation, we rescued the normal molecular phenotype by expression of the wild-type TSFM cDNA in patient''s fibroblasts. Different TSFM mutations can produce the same or very different clinical phenotypes, going from abortions to moderately severe presentations. On the other hand, the same TSFM mutation can also produce same or different phenotypes within the same range of presentations, therefore suggesting the involvement of unknown factors

    Targeted next generation sequencing in patients with inborn errors of metabolism

    Get PDF
    BACKGROUND: Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. METHODS: The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. RESULTS: Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). CONCLUSIONS: A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis
    corecore