306 research outputs found

    Quantitative phase microscopy enables precise and efficient determination of biomolecular condensate composition

    Get PDF
    Many compartments in eukaryotic cells are protein-rich biomolecular condensates demixed from the cyto- or nucleoplasm. Although much has been learned in recent years about the integral roles condensates play in many cellular processes as well as the biophysical properties of reconstituted condensates, an understanding of their most basic feature, their composition, remains elusive. Here we combined quantitative phase microscopy (QPM) and the physics of sessile droplets to develop a precise method to measure the shape and composition of individual model condensates. This technique does not rely on fluorescent dyes or tags, which we show can significantly alter protein phase behavior, and requires 1000-fold less material than traditional label-free technologies. We further show that this QPM method measures the protein concentration in condensates to a 3-fold higher precision than the next best label-free approach, and that commonly employed strategies based on fluorescence intensity dramatically underestimate these concentrations by as much as 50-fold. Interestingly, we find that condensed-phase protein concentrations can span a broad range, with PGL3, TAF15(RBD) and FUS condensates falling between 80 and 500 mg/ml under typical in vitro conditions. This points to a natural diversity in condensate composition specified by protein sequence. We were also able to measure temperature-dependent phase equilibria with QPM, an essential step towards relating phase behavior to the underlying physics and chemistry. Finally, time-resolved QPM reveals that PGL3 condensates undergo a contraction-like process during aging which leads to doubling of the internal protein concentration coupled to condensate shrinkage. We anticipate that this new approach will enable understanding the physical properties of biomolecular condensates and their function

    Isolation of Neisseria meningitidis strains with increase of penicillin minimal inhibitory concentrations

    Get PDF
    We report the isolation and characterization of ten strains showing an increase in the minimal inhibitory concentrations to penicillin (MICs > 0·1 ÎŒg/ml), and describe the epidemiological, clinical and microbiological features. The susceptibility of 3432 meningococcal strains isolated from patients in the recent epidemic wave (1978–86) in Spain, to several antimicrobial agents used in the treatment and chemoprophylaxis of meningococcal infection has been tested. Most were resistant to sulphadiazine but sensitive to other antibiotics. The possible existence of a new pattern of behaviour of meningococcal to penicillin is discussed

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex

    How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

    Get PDF
    This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks ? and; (ii) what are the effects of synaptic plasticity on these statistics ? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure

    AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration

    Get PDF
    Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton

    Plan de negocio para determinar la viabilidad econ?mica y financiera de una nueva unidad de negocio de jugos naturales envasados, para la empresa Agrovado

    Get PDF
    El presente plan de negocios evaluar? la viabilidad econ?mica y financiera de una nueva unidad de negocio de jugos naturales envasados, compuesto por un mix de frutas y verduras, para la empresa Agrovado. Asimismo, desarrollar? el plan de marketing, plan de operaciones, recursos humanos, plan de evaluaci?n econ?mica y financiera para la implementaci?n exitosa del negocio

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
    • 

    corecore