89 research outputs found

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    Skyrme mean-field study of rotational bands in transfermium isotopes

    Get PDF
    Self-consistent mean field calculations with the SLy4 interaction and a density-dependent pairing force are presented for nuclei in the Nobelium mass region. Predicted quasi-particle spectra are compared with experiment for the heaviest known odd N and odd Z nuclei. Spectra and rotational bands are presented for nuclei around No252,4 for which experiments are either planned or already running.Comment: 13 pages LATEX, elsart style, 6 embedded eps figure

    Studies of the electric dipole transitions of deformed rare-earth nuclei

    Get PDF
    Spectrum and electric dipole transition rates and relative intensities in 152154^{152-154}Sm, 156160^{156-160}Gd, 160162^{160-162}Dy are studied in the framework of the interacting boson model with s,p,d,f bosons. It is found that E1 transition data among the low-lying levels are in good agreement with the SU(3) dynamical symmetry of the spdf interacting boson model proposed by Engel and Iachello to describe collective rotation with octupole vibration. These results show that these nuclei have SU(3) dynamic symmetry to a good approximation. Also in this work many algebraic expressions for electric dipole transitions in the SU(3) limit of the spdf-IBM have been obtained. These formulae together with the formulae given previously exhaust nearly all the E1 transitions for low-lying negative parity states. They are useful in analyzing experimental data.Comment: 26 pages, 1 figur

    First decay study of the very neutron-rich isotope Br-93

    Full text link
    The decay of the mass-separated, very neutron-rich isotope Br-93 has been studied by gamma-spectroscopy. A level scheme of its daughter Kr-93 has been constructed. Level energies, gamma-ray branching ratios and multipolarities suggest spins and parities which are in accord with a smooth systematics of the N=57 isotones for Z less-equal 40, suggesting the N=56 shell closure still to be effective in Kr isotopes. So far, there is no indication of a progressive onset of deformation in neutron-rich Kr isotopes.Comment: 17 pages, 3 figures, Phys. Rev. C, in prin

    Analytical description of the Coherent State Model for near vibrational and well deformed nuclei

    Full text link
    Analytical formulas for the excitation energies as well as for the electric quadrupole reduced transition probabilities in the ground, beta and gamma bands were derived within the coherent state model for the near vibrational and well deformed nuclei. Numerical calculations were performed for 42 nuclei exhibiting various symmetries and therefore with specific properties. Comparison of the calculation results with the corresponding experimental data shows a good agreement. The parameters involved in the proposed model satisfy evident regularities being interpolated by smooth curves. Few of them, which fall out of the curves, are interpreted as signatures for a critical point in a specific phase transition. This is actually supported also by the figures showing the excitation energy dependence on the angular momentum. The formulas provided for energies and B(E2) values are very simple, being written in a compact form, and therefore easy to be handled to explain the new experimental data.Comment: 9 figures, 50 page

    X(3): An Exactly Separable Gamma-Rigid Version of the X(5) Critical Point Symmetry

    Get PDF
    A gamma-rigid version (with gamma=0) of the X(5) critical point symmetry is constructed. The model, to be called X(3) since it is proved to contain three degrees of freedom, utilizes an infinite well potential, is based on exact separation of variables, and leads to parameter free (up to overall scale factors) predictions for spectra and B(E2) transition rates, which are in good agreement with existing experimental data for 172-Os and 186-Pt. An unexpected similarity of the first beta bands of the X(5) nuclei 150-Nd, 152-Sm, 154-Gd, and 156-Dy to the X(3) predictions is observed.Comment: LaTeX, 12 pagres, including 4 postscript figure

    Ground-γ\gamma band coupling in heavy deformed nuclei and SU(3) contraction limit

    Full text link
    We derive analytic expressions for the energies and B(E2)B(E2)-transition probabilities in the states of the ground and γ\gamma bands of heavy deformed nuclei within a collective Vector-Boson Model with SU(3) dynamical symmetry. On this basis we examine the analytic behavior of the SU(3) energy splitting and the B(E2) interband transition ratios in the SU(3) contraction limits of the model. The theoretical analyses outline physically reasonable ways in which the ground-γ\gamma band coupling vanishes. The experimental data on the lowest collective states of even-even rare earth nuclei and actinides strongly support the theoretical results. They suggest that a transition from the ground-γ\gamma band coupling scheme to a scheme in which the ground band is situated in a separate irreducible representation of SU(3) should be realized towards the midshell regions. We propose that generally the SU(3) group contraction process should play an important role for such a kind of transitions in any collective band coupling scheme in heavy deformed nuclei.Comment: 24 pages (LaTeX), 7 figures (12 postscript files

    Excited Nuclear States for Fr-228 (Francium)

    No full text

    Excited Nuclear States for U-228 (Uranium)

    No full text
    corecore