284 research outputs found

    Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature.

    Get PDF
    BACKGROUND: Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS: Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS: Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures

    Distributed situation awareness in dynamic systems: Theoretical development and application of an ergonomics methodology

    Get PDF
    The purpose of this paper is to propose foundations for a theory of situation awareness based on the analysis of interactions between agents (i.e., both human and non-human) in subsystems. This approach may help promote a better understanding of technology-mediated interaction in systems, as well as helping in the formulation of hypotheses and predictions concerning distributed situation awareness. It is proposed that agents within a system each hold their own situation awareness which may be very different from (although compatible with) other agents. It is argued that we should not always hope for, or indeed want, sharing of this awareness, as different system agents have different purposes. This view marks situation awareness as a 1 dynamic and collaborative process that binds agents together on tasks on a moment-by-moment basis. Implications of this viewpoint for development of a new theory of, and accompanying methodology for, distributed situation awareness are offered

    Simulation of developmental changes in action potentials with ventricular cell models

    Get PDF
    During cardiomyocyte development, early embryonic ventricular cells show spontaneous activity that disappears at a later stage. Dramatic changes in action potential are mediated by developmental changes in individual ionic currents. Hence, reconstruction of the individual ionic currents into an integrated mathematical model would lead to a better understanding of cardiomyocyte development. To simulate the action potential of the rodent ventricular cell at three representative developmental stages, quantitative changes in the ionic currents, pumps, exchangers, and sarcoplasmic reticulum (SR) Ca2+ kinetics were represented as relative activities, which were multiplied by conductance or conversion factors for individual ionic systems. The simulated action potential of the early embryonic ventricular cell model exhibited spontaneous activity, which ceased in the simulated action potential of the late embryonic and neonatal ventricular cell models. The simulations with our models were able to reproduce action potentials that were consistent with the reported characteristics of the cells in vitro. The action potential of rodent ventricular cells at different developmental stages can be reproduced with common sets of mathematical equations by multiplying conductance or conversion factors for ionic currents, pumps, exchangers, and SR Ca2+ kinetics by relative activities

    \u3ci\u3eSnowedOut Atlanta\u3c/i\u3e: Examining digital emergence on facebook during a crisis

    Get PDF
    Individuals in emergencies form spontaneous, emergent groups to respond and recover. With the rise of social media use in crises, academics and professionals must be aware of how groups digitally coordinate emergent response efforts. This paper examines digital emergence through the case of SnowedOut Atlanta, a Facebook group formed during the 2014 ice storms in Atlanta. The posts and actions of the group members are in line with those of traditional emergent groups. For example, group members shared informational, material, and emotional support. The findings also provide implications for practitioners and insight into the communication of such groups. In particular, emergency managers have an opportunity to seek out and partner with these types of groups in future similar events

    Room-temperature spin-orbit torque in NiMnSb

    Get PDF
    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin–orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin–orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin–orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin–orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin–orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.University of WürzburgThis is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nphys377

    Solitary median maxillary central incisor (SMMCI) syndrome

    Get PDF
    Solitary median maxillary central incisor syndrome (SMMCI) is a complex disorder consisting of multiple, mainly midline defects of development resulting from unknown factor(s) operating in utero about the 35th–38th day(s) from conception. It is estimated to occur in 1:50,000 live births. Aetiology is uncertain. Missense mutation in the SHH gene (I111F) at 7q36 may be associated with SMMCI. The SMMCI tooth differs from the normal central incisor, in that the crown form is symmetric; it develops and erupts precisely in the midline of the maxillary dental arch in both primary and permanent dentitions. Congenital nasal malformation (choanal atresia, midnasal stenosis or congenital pyriform aperture stenosis) is positively associated with SMMCI. The presence of an SMMCI tooth can predict associated anomalies and in particular the serious anomaly holoprosencephaly. Common congenital anomalies associated with SMMCI are: severe to mild intellectual disability, congenital heart disease, cleft lip and/or palate and less frequently, microcephaly, hypopituitarism, hypotelorism, convergent strabismus, oesophageal and duodenal atresia, cervical hemivertebrae, cervical dermoid, hypothyroidism, scoliosis, absent kidney, micropenis and ambiguous genitalia. Short stature is present in half the children. Diagnosis should be made by eight months of age, but can be made at birth and even prenatally at 18–22 weeks from the routine mid-trimester ultrasound scan. Management depends upon the individual anomalies present. Choanal stenosis requires emergency surgical treatment. Short stature may require growth hormone therapy. SMMCI tooth itself is mainly an aesthetic problem, which is ideally managed by combined orthodontic, prosthodontic and oral surgical treatment; alternatively, it can be left untreated
    corecore