55 research outputs found

    Large scale protein function prediction tools.

    Get PDF
    In this project we intend to reinforce a recent collaboration established between two French and Brazilian bioinformatics laboratories for the development of a structural genomics approach to functional annotation of proteins.CSBC 2009

    The <i>Ectocarpus</i> genome and the independent evolution of multicellularity in brown algae

    Get PDF
    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1).We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other aspects of brown algal biology further

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Processing massive datasets in genomics

    No full text
    Life science researches have been profoundly impacted by technological advances allowing faster and cheaper DNA sequencing. Opening a wide range of applications in medical and biology, the last generation sequencing platforms raised new challenges, in particular in processing, analysing and interpreting massive data. In this talk, the growing role of bioinformatics will be illustrated by providing some figures about genome sequencing and others applications aimed at unravelling biological mechanisms. Methods to gather insights from massive amount of data will be illustrated by the genome annotation process, by which genes are identified in the genome sequence

    Genomic exploration of the hemiascomycetous yeasts: 8. Zygosaccharomyces rouxii.

    No full text
    This paper reports the genomic analysis of strain CBS732 of Zygosaccharomyces rouxii, a homothallic diploid yeast. We explored the sequences of 4934 random sequencing tags of about 1 kb in size and compared them to the Saccharomyces cerevisiae gene products. Approximately 2250 nuclear genes, 57 tRNAs, the rDNA locus, the endogenous pSR1 plasmid and 15 mitochondrial genes were identified. According to 18S and 25S rRNA cladograms and to synteny analysis, Z. rouxii could be placed among the S. cerevisiae sensu lato yeasts.comparative studyjournal articleresearch support, non-u.s. gov't2000 Dec 22importe
    corecore