19 research outputs found

    A Locus for Bilateral Perisylvian Polymicrogyria Maps to Xq28

    Get PDF
    Polymicrogyria (PMG) is one of a large group of human cortical malformations that collectively account for a significant percentage of patients with epilepsy, congenital neurological deficits, and intellectual disability. PMG is characterized by an excess of small gyri and abnormal cortical lamination. The most common distribution is bilateral, symmetrical, and maximal, in the region surrounding the sylvian fissures, and is known as “bilateral perisylvian polymicrogyria” (BPP). Most cases are sporadic, although several families have been observed with multiple affected members, usually following an X-linked inheritance pattern. Here we report the first genetic locus for BPP mapped by linkage analysis in five families. Linkage places the critical region for BPP at Xq28 (LOD score 3.08 in Xq28, distal to DXS8103 by multipoint analysis). We suggest that this region contains a gene that is necessary for correct neuronal organization and that the identification of this gene will both enhance our understanding of normal cortical development and accelerate the identification of other genes responsible for PMG

    Autonomous Self-Optimization of Coverage and Capacity in LTE Cellular Networks

    No full text
    Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EPTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the fast multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome.government of Canada through Genome Canadagovernment of Canada through Genome CanadaCanadian Institutes of Health Research (CIHR)Canadian Institutes of Health Research (CIHR)Ontario Genomics InstituteOntario Genomics Institute [OGI-049]Genome QuebecGenome QuebecGenome British ColumbiaGenome British ColumbiaPhysicians Services Incorporated FoundationPhysicians' Services Incorporated FoundationGerman Ministry of Research and Education [BMBF 01GM0802]German Ministry of Education and ResearchCIHR Institute of GeneticsCIHR Institute of Genetic

    Identification of 34 novel and 56 known FOXL2 mutations in patients with Blepharophimosis syndrome

    No full text
    Blepharophimosis syndrome (BPES) is caused by loss-of-function mutations in the single-exon forkhead transcription factor gene FOXL2 and by genomic rearrangements of the FOXL2 locus. Here, we focus on 92 new intragenic FOXL2 mutations, 34 of which are novel. Specifically, we found 10 nonsense mutations (11%), 13 missense mutations (14%), 40 deletions or insertions leading to a frameshift (43%), and 29 in-frame changes (32%), of which 28 (30%) lead to a polyalanine expansion. This study confirms the existence of two previously described mutational hotspots. Moreover, we gained novel insights in genotype-phenotype correlations, emphasizing the need to interpret genotype-phenotype correlations individually and always in the context of further clinical observations.status: publishe

    Identification of 34 novel and 56 known FOXL2 mutations in patients with blepharophimosis syndrome

    No full text
    Blepharophimosis syndrome (BPES) is caused by loss-of-function mutations in the single-exon forkhead transcription factor gene FOXL2 and by genomic rearrangements of the FOXL2 locus. Here, we focus on 92 new intragenic FOXL2 mutations, 34 of which are novel. Specifically, we found 10 nonsense mutations (11%), 13 missense mutations (14%), 40 deletions or insertions leading to a frameshift (43%), and 29 in-frame changes (32%), of which 28 (30%) lead to a polyalanine expansion. This study confirms the existence of two previously described mutational hotspots. Moreover, we gained novel insights in genotype-phenotype correlations, emphasizing the need to interpret genotype-phenotype correlations individually and always in the context of further clinical observations. (C) 2008 Wiley-Liss, In
    corecore