59 research outputs found

    Liver Regeneration in Surgical Animal Models - A Historical Perspective and Clinical Implications

    Get PDF
    Methods/Aims: Despite improved preoperative evaluation, surgical techniques and perioperative intensive care, some patients still experience postoperative liver failure in part due to insufficient regeneration. The aim of this review is to give the reader a historical synopsis of the major trends in animal research on liver regeneration from the early experiments in 1877 up to modern investigation. A major focus is placed on the translational value of experimental surgery. Methods: A systematic review of the English literature published in Medline was undertaken with the search words ‘pig, porcine, dog, canine, liver regeneration, experimental’. Results: The evolution of the various models tentatively explaining the process of liver regeneration is described. Conclusions: We conclude by emphasizing the importance of large-animal surgical research on liver regeneration as it offers a more integrated, systemic biological understanding of this complex process. Furthermore, in our opinion, a closer collaboration between the hepatologist, liver surgeon/transplant surgeon and the laboratory scientist may advance clinically relevant research in liver regeneration

    Scavenger properties of cultivated pig liver endothelial cells

    Get PDF
    BACKGROUND: The liver sinusoidal endothelial cells (LSEC) and Kupffer cells constitute the most powerful scavenger system in the body. Various waste macromolecules, continuously released from tissues in large quantities as a consequence of normal catabolic processes are cleared by the LSEC. In spite of the fact that pig livers are used in a wide range of experimental settings, the scavenger properties of pig LSEC has not been investigated until now. Therefore, we studied the endocytosis and intracellular transport of ligands for the five categories of endocytic receptors in LSEC. RESULTS: Endocytosis of five (125)I-labelled molecules: collagen α-chains, FITC-biotin-hyaluronan, mannan, formaldehyde-treated serum albumin (FSA), and aggregated gamma globulin (AGG) was substantial in cultured LSEC. The endocytosis was mediated via the collagen-, hyaluronan-, mannose-, scavenger-, or IgG Fc-receptors, respectively, as judged by the ability of unlabelled ligands to compete with labelled ligands for uptake. Intracellular transport was studied employing a morphological pulse-chase technique. Ninety minutes following administration of red TRITC-FSA via the jugular vein of pigs to tag LSEC lysosomes, cultures of the cells were established, and pulsed with green FITC-labelled collagen, -mannan, and -FSA. By 10 min, the FITC-ligands was located in small vesicles scattered throughout the cytoplasm, with no co-localization with the red lysosomes. By 2 h, the FITC-ligands co-localized with red lysosomes. When LSEC were pulsed with FITC-AGG and TRITC-FSA together, co-localization of the two ligands was observed following a 10 min chase. By 2 h, only partial co-localization was observed; TRITC-FSA was transported to lysosomes, whereas FITC-AGG only slowly left the endosomes. Enzyme assays showed that LSEC and Kupffer cells contained equal specific activities of hexosaminidase, aryl sulphates, acid phosphatase and acid lipase, whereas the specific activities of α-mannosidase, and glucuronidase were higher in LSEC. All enzymes measured showed considerably higher specific activities in LSEC compared to parenchymal cells. CONCLUSION: Pig LSEC express the five following categories of high capacity endocytic receptors: scavenger-, mannose-, hyaluronan-, collagen-, and IgG Fc-receptors. In the liver, soluble ligands for these five receptors are endocytosed exclusively by LSEC. Furthermore, LSEC contains high specific activity of lysosomal enzymes needed for degradation of endocytosed material. Our observations suggest that pig LSEC have the same clearance activity as earlier described in rat LSEC

    Antenatal breastmilk expression for women with diabetes in pregnancy - a feasibility study

    Get PDF
    Background: Mothers with diabetes are less likely to achieve successful breastfeeding. Antenatal breastmilk expression (ABE) may facilitate earlier breastfeeding, but feasibility of introducing ABE and its acceptance among Scandinavian women have previously not been investigated. Methods: This observational trial was conducted between the 1 January 2019 and the 12 March 2020 in Tromsø, Norway. We aimed to determine the feasibility of ABE in terms of practicality and acceptability among women with medically (metformin or insulin) treated diabetes. Women were invited to participate during antenatal visits from 32 weeks gestation. Participants received instruction and started ABE from gestation week 37 + 0. Participants, and their infants, were followed until 6–8 weeks after birth. We collected data on breastfeeding rates, infant hypoglycemia, transfer to the neonatal unit, and the women’s overall experience and satisfaction with antenatal breastmilk expression. Results: Twenty-eight of 34 (82%) invited women consented to participate. All started ABE from week 37 + 0, and continued until hospital admission. No women reported any discomfort or side effects. Labor was induced at 38 weeks gestation. Twenty-four women brought harvested colostrum to the maternity ward, which was given to their infants during the first 24 h of life. Breastfeeding rates at discharge were 24/28 (86%) and 21/27 (78%) at 6–8 weeks after delivery. Seven (25%) infants were transferred to the neonatal unit; four because of hypoglycemia. Maternal satisfaction assessed 6–8 weeks after delivery revealed that all participants felt positive about the ABE, but one woman would not recommend it to other pregnant women. Conclusions: Implementing a structured ABE guideline for women with medically treated diabetes was feasible. The intervention was associated with high level of satisfaction among study participants. No obvious side effects were observed, and breastfeeding rates at discharge and 6–8 weeks after delivery were higher than in comparable studies. Trial registration: The study was registered at the research study registry at the University Hospital of North Norway (Nr 2018/7181)

    Uncertainty-Aware Deep Ensembles for Reliable and Explainable Predictions of Clinical Time Series

    Get PDF
    Deep learning-based support systems have demonstrated encouraging results in numerous clinical applications involving the processing of time series data. While such systems often are very accurate, they have no inherent mechanism for explaining what influenced the predictions, which is critical for clinical tasks. However, existing explainability techniques lack an important component for trustworthy and reliable decision support, namely a notion of uncertainty. In this paper, we address this lack of uncertainty by proposing a deep ensemble approach where a collection of DNNs are trained independently. A measure of uncertainty in the relevance scores is computed by taking the standard deviation across the relevance scores produced by each model in the ensemble, which in turn is used to make the explanations more reliable. The class activation mapping method is used to assign a relevance score for each time step in the time series. Results demonstrate that the proposed ensemble is more accurate in locating relevant time steps and is more consistent across random initializations, thus making the model more trustworthy. The proposed methodology paves the way for constructing trustworthy and dependable support systems for processing clinical time series for healthcare related tasks.Comment: 11 pages, 9 figures, code at https://github.com/Wickstrom/TimeSeriesXA

    Neuropathological changes in the brain of pigs with acute liver failure

    Full text link
    Abstract Objective. Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial hypertension and death. An accepted tenet has been that the blood-brain barrier is intact and that brain edema is primarily caused by a cytotoxic etiology due to hyperammonemia. However, the neuropathological changes in ALF have been poorly studied. Using a well characterized porcine model we aimed to investigate ultrastructural changes in the brain from pigs suffering from ALF. Materials and methods. Sixteen female Norwegian Landrace pigs weighing 27-35 kg were randomised into two groups: ALF (n = 8) and sham operated controls (n = 8). ALF was induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries. Biopsies were harvested from three different areas of the brain (frontal lobe, cerebellum, and brain stem) following eight hours of ALF and analyzed using electron microscopy. Results. Profound perivascular and interstitial edema were found in all three areas. Disruption of pericytic and astrocytic processes were seen, reflecting breakdown/lesion of the blood-brain barrier in animals suffering from ALF. Furthermore, neurons and axons were edematous and surrounded by vesicles. Severe damage to Purkinje neuron (necrosis) and damaged myelin were seen in the cerebellum and brain stem, respectively. Biopsies from sham operated animals were normal. Conclusions. Our data support the concept that vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with ALF

    Time series cluster kernels to exploit informative missingness and incomplete label information

    Get PDF
    The time series cluster kernel (TCK) provides a powerful tool for analysing multivariate time series subject to missing data. TCK is designed using an ensemble learning approach in which Bayesian mixture models form the base models. Because of the Bayesian approach, TCK can naturally deal with missing values without resorting to imputation and the ensemble strategy ensures robustness to hyperparameters, making it particularly well suited for unsupervised learning. However, TCK assumes missing at random and that the underlying missingness mechanism is ignorable, i.e. uninformative, an assumption that does not hold in many real-world applications, such as e.g. medicine. To overcome this limitation, we present a kernel capable of exploiting the potentially rich information in the missing values and patterns, as well as the information from the observed data. In our approach, we create a representation of the missing pattern, which is incorporated into mixed mode mixture models in such a way that the information provided by the missing patterns is effectively exploited. Moreover, we also propose a semi-supervised kernel, capable of taking advantage of incomplete label information to learn more accurate similarities. Experiments on benchmark data, as well as a real-world case study of patients described by longitudinal electronic health record data who potentially suffer from hospital-acquired infections, demonstrate the effectiveness of the proposed method

    Contractile response of femoral arteries in pigs with acute liver failure

    Full text link
    BACKGROUND: Acute liver failure (ALF) is characterized haemodynamically by a progressive hyperdynamic circulation. The pathophysiological mechanism is unknown, but impaired contractility of vascular smooth muscle may play an important role. The aim of this study was to evaluate the vascular response to stimulation with norepinephrine and angiotensin II in endothelium-denuded femoral artery rings. METHODS: Norwegian Landrace pigs weighing 27.1 +/- 0.5 kg (mean +/- sx (standard error of the mean)) were used. ALF was induced by performing a portacaval shunt followed by ligation of the hepatic arteries (n = 6). Sham-operated animals served as controls (n = 5). Cumulative isometric concentration contraction curves were obtained after in vitro stimulation of the femoral artery rings with either angiotensin II (10(-13) - 10(-5) mol/L) or norepinephrine (10(-13) - 10(-3) mol/L). RESULTS: Pigs suffering from ALF developed a hyperdynamic circulation with an increased cardiac index (P = 0.017) and decreased systemic vascular resistance index (P = 0.015). Studies of the hind leg revealed a decreased vascular resistance index and increased blood flow compared to sham-operated controls (P = 0.003 and P = 0.01, respectively). Angiotensin II caused a concentration-dependent contraction of the arterial segments, with no significant differences in vascular responses between the two groups. Maximum force generated did not differ (55 +/- 7 versus 56 +/- 7 mN, P = 0.95). Furthermore, there were no differences for norepinephrine in the cumulative concentration-response curves and the maximum contractile force was not significantly different (87 +/- 8 versus 93 +/- 16 mN, P = 0.55). CONCLUSIONS: This study documents for the first time that there are no signs of endothelium-independent peripheral vascular hyporesponsiveness to angiotensin II and norepinephrine in pigs with ALF

    Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure

    Full text link
    We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation
    • …
    corecore