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a b s t r a c t 

The time series cluster kernel (TCK) provides a powerful tool for analysing multivariate time series sub- 

ject to missing data. TCK is designed using an ensemble learning approach in which Bayesian mixture 

models form the base models. Because of the Bayesian approach, TCK can naturally deal with missing 

values without resorting to imputation and the ensemble strategy ensures robustness to hyperparame- 

ters, making it particularly well suited for unsupervised learning. 

However, TCK assumes missing at random and that the underlying missingness mechanism is ignor- 

able, i.e. uninformative, an assumption that does not hold in many real-world applications, such as e.g. 

medicine. To overcome this limitation, we present a kernel capable of exploiting the potentially rich in- 

formation in the missing values and patterns, as well as the information from the observed data. In our 

approach, we create a representation of the missing pattern, which is incorporated into mixed mode mix- 

ture models in such a way that the information provided by the missing patterns is effectively exploited. 

Moreover, we also propose a semi-supervised kernel, capable of taking advantage of incomplete label 

information to learn more accurate similarities. 

Experiments on benchmark data, as well as a real-world case study of patients described by longitudinal 

electronic health record data who potentially suffer from hospital-acquired infections, demonstrate the 

effectiveness of the proposed methods. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multivariate time series (MTS) frequently occur in a whole 

ange of practical applications such as medicine, biology, and cli- 

ate studies, to name a few. A challenge that complicates the 

nalysis is that real-world MTS are often subject to large amounts 

f missing data. Traditionally, missingness mechanisms have been 

ategorized into missing completely at random (MCAR), missing 

t random (MAR) and missing not at random (MNAR) [1] . The 

ain difference between these mechanisms consists in whether 

he missingness is ignorable (MCAR and MAR) or non-ignorable 

MNAR) [1–3] . In e.g. medicine, non-ignorable missingness can oc- 
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ur when the missing patterns R are related to the disease under 

tudy Y . In this case, the distribution of the missing patterns for 

iseased patients is not equal to the corresponding distribution for 

he control group, i.e. p(R | Y = 1) � = p(R | Y = 0) . Hence, the miss-

ngness is informative [4–7] . By contrast, uninformative missing- 

ess will be referred to as ignorable in the remainder of this paper. 

Both ignorable and informative missingness occur in real-world 

ata. An example from medicine of ignorable missingness occurs 

.g. if a clinician orders lab tests for a patient and the tests are 

erformed, but because of an error the results are not recorded. On 

he other hand, informative missingness could occur if it is decided 

o not perform lab tests because the doctor thinks the patient is 

n good shape. In the latter case, the missing values and patterns 

otentially contain rich information about the diseases and clinical 

utcomes for the patient. Efficient data-driven approaches aiming 

o extract knowledge, perform predictive modelling, etc., must be 

apable of capturing this information. 
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Various methods have been proposed to handle missing data in 

TS [8–11] . One simple approach is to create a complete dataset 

y discarding the time series with missing data. However, this 

ives unbiased predictions only if the missingness mechanism is 

CAR. As an alternative, a preprocessing step involving imputa- 

ion of missing values with some estimated value, such as the 

ean, is common. Other so-called single imputation methods ex- 

loit machine learning based methods such as multilayer percep- 

rons, self-organizing maps, k-nearest neighbors, recurrent neural 

etworks and regression-based imputation [12,13] . Alternatively, 

ne can impute missing values using various smoothing and in- 

erpolation techniques [12,14] . Among these, a prominent example 

s the last observation carried forward (LOCF) scheme that imputes 

he last non-missing value for the following missing values. Limi- 

ations of imputation methods are that they introduce additional 

ias and they ignore uncertainty associated with the missing val- 

es. 

Multiple imputation [15] resolves this problem, to some ex- 

ent, by estimating the missing values multiple times and thereby 

reating multiple complete datasets. Thereafter, e.g. a classifier is 

rained on all datasets and the results are combined to obtain the 

nal predictions. However, despite that multiple imputation and 

ther imputation methods can give satisfying results in some sce- 

arios, these are ad-hoc solutions that lead to a multi-step proce- 

ure in which the missing data are handled separately and inde- 

endently from the rest of the analysis. Moreover, the information 

bout which values are actually missing (the missing patterns) is 

ost, i.e. imputation methods cannot exploit informative missing- 

ess. 

Due to the aforementioned limitations, several research efforts 

ave been devoted over the last years to process incomplete time 

eries without relying on imputation [5–7,16–23] . In this regard, 

owerful kernel methods have been proposed, of which the time 

eries cluster kernel (TCK) [24] is a prominent example. The TCK is 

esigned using an ensemble learning approach in which Bayesian 

ixture models form the base models. An advantage of TCK, com- 

ared to imputation methods, is that the missing data are handled 

utomatically and no additional tasks are left to the user. Multiple 

mputation instead requires a careful selection of the imputation 

odel and other variables are needed to do the imputation [8] , 

hich particularly in an unsupervised setting can turn out to be 

roblematic. 

A shortcoming of the TCK is that unbiased predictions are only 

uaranteed for ignorable missingness, i.e. the kernel cannot take 

dvantage of informative missing patterns frequently occurring in 

edical applications. To overcome this limitation, in this work, we 

resent a novel time series cluster kernel, TCK IM 

. In our approach, 

e create a representation of the missing patterns using masking, 

.e. we represent the missing patterns using binary indicator time 

eries. By doing so, we obtain MTS consisting of both continuous 

nd discrete attributes. To model these time series, we introduce 

ixed mode Bayesian mixture models, which can effectively ex- 

loit information provided by the missing patterns. 

The time series cluster kernels are particularly useful in un- 

upervised settings. In many practical applications such as e.g. 

edicine it is not feasible to obtain completely labeled training 

ets [25] , but in some cases it is possible to annotate a few sam-

les with labels, i.e. incomplete label information is available. In 

rder to exploit the incomplete label information, we propose a 

emi-supervised MTS kernel, ssTCK. In our approach, we incorpo- 

ate ideas from information theory to measure similarities between 

istributions. More specifically, we employ the Kullback-Leibler di- 

ergence to assign labels to unlabeled data. 

Experiments on benchmark MTS datasets and a real-world case 

tudy of patients suffering from hospital-acquired infections, de- 
2 
cribed by longitudinal electronic health record data, demonstrate 

he effectiveness of the proposed TCK IM 

and ssTCK kernels. 

The remainder of this paper is organized as follows. 

ection 2 presents background on MTS kernels. The two pro- 

osed kernels are described in Sections 3 and 4 , respectively. 

xperiments on synthetic and benchmark datasets are presented 

n Section 5 , whereas the case study is described in Section 6 .

ection 7 concludes the paper. 

. Multivariate time series kernels to handle missing data 

Kernel methods have been of great importance in machine 

earning for several decades and have applications in many dif- 

erent fields [26–28] . Within the context of time series, a kernel 

s a similarity measure that also is positive semi-definite [29,30] . 

nce defined, such similarities between pairs of time series may 

e utilized in a wide range of applications, such as classification 

r clustering, benefiting from the vast body of work in the field of 

ernel methods. Here we provide an overview of MTS kernels, and 

escribe how they deal with missing data. 

The simplest of all kernel functions is the linear kernel, which 

or two data points represented as vectors, x and y, is given by the 

nner product 〈 x, y 〉 , possibly plus a constant c. One can also apply

 linear kernel to pairs of MTS once they are unfolded into vectors. 

owever, by doing so the information that they are MTS and there 

ight be inherent dependencies in time and between attributes, is 

hen lost. Nevertheless, in some cases such a kernel can be effi- 

ient, especially if the MTS are short [31] . If the MTS contain miss- 

ng data, the linear kernel requires a preprocessing step involving 

.g. imputation. 

The most widely used time series similarity measure is dynamic 

ime warping (DTW) [32–34] , where the similarity is quantified as 

he alignment cost between the MTS. More specifically, in DTW 

he time dimension of one or both of the time series is warped 

o achieve a better alignment. Despite the success of DTW in many 

pplications, similarly to many other similarity measures, it is non- 

etric and therefore cannot non-trivially be used to design a pos- 

tive semi-definite kernel [35] . Hence, it is not suited for kernel 

ethods in its original formulation. However, because of its pop- 

larity there have been attempts to design kernels exploiting the 

TW. For example, Cuturi et al. designed a DTW-based kernel us- 

ng global alignments [36] . An efficient version of the global align- 

ent kernel (GAK) is provided in Cuturi [37] . The latter has two 

yperparameters, namely the kernel bandwidth and the triangular 

arameter. GAK does not naturally deal with missing data and in- 

omplete datasets, and therefore also requires a preprocessing step 

nvolving imputation. 

Two MTS kernels that can naturally deal with missing data 

ithout having to resort to imputation are the learned pattern sim- 

larity (LPS) [38] and TCK. LPS generalizes the well-known autore- 

ressive models to local autopatterns using multiple lag values for 

utocorrelation. These autopatterns are supposed to capture the lo- 

al dependency structure in the time series and are learned using 

 tree-based (random forest) learning strategy. More specifically, a 

ime series is represented as a matrix of segments. Randomness 

s injected to the learning process by randomly choosing time seg- 

ent (column in the matrix) and lag p for each tree in the random 

orest. A bag-of-words type compressed representation is created 

rom the output of the leaf-nodes for each tree. The final time se- 

ies representation is created by concatenating the representation 

btained from the individual trees, which in turn are used to com- 

ute the similarity using a histogram intersection kernel [39] . 

The TCK is based on an ensemble learning approach wherein 

obustness to hyperparameters is ensured by joining the cluster- 

ng results of many Gaussian mixture models (GMM) to form the 
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nal kernel. Hence, no critical hyperparameters have to be tuned 

y the user, and the TCK can be learned in an unsupervised man- 

er. To ensure robustness to sparsely sampled data, the GMMs that 

re the base models in the ensemble, are extended using informa- 

ive prior distributions such that the missing data is explicitly dealt 

ith. More specifically, the TCK matrix is built by fitting GMMs to 

he set of MTS for a range of number of mixture components. The 

dea is that by generating partitions at different resolutions, one 

an capture both the local and global structure of the data. More- 

ver, to capture diversity in the data, randomness is injected by for 

ach resolution (number of components) estimating the mixture 

arameters for a range of random initializations and randomly cho- 

en hyperparameters. In addition, each GMM sees a random subset 

f attributes and segments in the MTS. The posterior distributions 

or each mixture component are then used to build the TCK matrix 

y taking the inner product between all pairs of posterior distribu- 

ions. Eventually, given an ensemble of GMMs, the TCK is created 

n an additive way by using the fact that the sum of kernels is also

 kernel. Recently, TCK has also been extended to handle spatial 

ependencies [40] . 

Despite that LPS and TCK kernels share many properties, the 

ay missing data are dealt with is very different. In LPS, the miss- 

ng data handling abilities of decision trees are exploited. Along 

ith ensemble methods, fuzzy approaches and support vector so- 

utions, decision trees can be categorized as machine learning ap- 

roaches for handling missing data [12] , i.e. the missing data are 

andled naturally by the machine learning algorithm. One can also 

rgue that the way missing data are dealt with in the TCK belongs 

o this category, since an ensemble approach is exploited. How- 

ver, it can also be categorized as a likelihood-based approach since 

he underlying models in the ensemble are Gaussian mixture mod- 

ls. In the likelihood-based approaches, the full, incomplete dataset 

s analysed using maximum likelihood (or maximum a posteri- 

ri, equivalently), typically in combination with the expectation- 

aximization (EM) algorithm [8,9] . These approaches assume that 

he missingness is ignorable. 

. Time series cluster kernel to exploit informative missingness 

In this section, we present the novel time series cluster kernel, 

CK IM 

, which is capable of exploiting informative missingness. 

A key component in the time series cluster kernel framework is 

nsemble learning, in which the basic idea consists in combining 

 collection of many base models into a composite model. A good 

uch composite model will have statistical, computational and rep- 

esentational advantages such as lower variance, lower sensitivity 

o local optima and is capable of representing a broader span func- 

ions (increased expressiveness), respectively, compared to the in- 

ividual base models [41] . Key to achieve this is diversity and accu- 

acy [42] , i.e. the base models cannot make the same errors on new

est data and have to perform better than random guessing. This 

an be done by integrating multiple outcomes of the same (weak) 

ase model as it is trained under different, often randomly chosen, 

ettings (parameters, initialization, subsampling, etc.) to ensure di- 

ersity [43] . 

In the TCK IM 

kernel, the base model is a mixed mode Bayesian 

ixture model. Next, we provide the details of this model. 

otation 

The following notation is used. A multivariate time series (MTS) 

is defined as a (finite) combination of univariate time series 

UTS), X = { x v ∈ R 

T | v = 1 , 2 , . . . , V } , where each attribute, x v , is

 UTS of length T . The number of UTS, V, is the dimension of

. The length T of the UTS x v is also the length of the MTS X .

ence, a V -dimensional MTS, X, of length T can be represented 
3 
s a matrix in R 

V ×T . Given a dataset of N MTS, we denote X (n ) 

he n -th MTS. An incompletely observed MTS is described by the 

air U 

(n ) = (X (n ) , R (n ) ) , where R (n ) is a binary MTS with entry

 

(n ) 
v (t) = 0 if the realization x (n ) 

v (t) is missing and r (n ) 
v (t) = 1 if it

s observed. 

ixed mode mixture model 

Assume that a MTS U = (X, R ) is generated from two modes. X

s a V-variate real-valued MTS ( X ∈ R 

V ×T ), whereas R is a V-variate

inary MTS ( R ∈ { 0 , 1 } V ×T ). Further, we assume that U is generated

rom a finite mixture density, 

p(U | �, �) = 

G ∑ 

g=1 

θg f (U | φg ) , (1) 

here G is the number of components, f is the density of the com- 

onents parametrized by � = (φ1 , . . . , φG ) , and � = (θ1 , . . . , θg ) 

re the mixing coefficients, 0 ≤ θG ≤ 1 and 

∑ G 
g=1 θg = 1 . 

Now, introduce a latent random variable Z, represented as a G - 

imensional one-hot vector Z = (Z 1 , . . . , Z G ) , whose marginal dis- 

ribution is given by p(Z | �) = 

∏ G 
g=1 θ

Z g 
g . The unobserved variable 

records the membership of U and therefore Z g = 1 if U be- 

ongs to component g and Z g = 0 otherwise. Hence, p(U | Z, �) = 

 G 
g=1 f (U | φg ) 

Z g , and therefore it follows that 

p(U, Z | �, �) = p(U | Z, �) p(Z | �) = 

G ∏ 

g=1 

[ f (U | φg ) θg ] 
Z g (2) 

 = (X, R ) consists of two modalities X and R . We now naively as-

ume that 

f (U | φg ) = f (X | R, μg , �g ) f (R | βg ) , (3) 

here f (X | R, μg , �g ) is a density function given by 

f (X | R, μg , �g ) = 

V ∏ 

v =1 

T ∏ 

t=1 

N (x v (t) | μgv (t) , σgv ) 
r v (t) , (4)

nd f (R | βg ) is a probability mass given by 

f (R | βg ) = 

V ∏ 

v =1 

T ∏ 

t=1 

β r v (t) 
gv t (1 − βgv t ) 

1 −r v (t) . (5) 

he parameters of each component are φg = (μg , �g , βg ) , where 

g = { μgv ∈ R 

T | v = 1 , . . . , V } is a time-dependent mean ( μgv is a

TS of length T ), �g = diag{ σ 2 
g1 

, . . . , σ 2 
gV 

} is a time-constant diag-

nal covariance matrix in which σ 2 
gv is the variance of attribute v , 

nd βgv t ∈ [0 , 1] are the parameters of the Bernoulli mixture model 

n Eq. (5) . The idea is that even though the missingness mechanism 

s ignored in f (X | R, μg , �g ) , which is only computed over the ob-

erved data, the Bernoulli term f (R | βg ) will capture information 

rom the missing patterns. 

The conditional probability of Z given U, can be found using 

ayes’ theorem, 

g ≡ P (Z g = 1 | U, �, �) 

= 

θg 

V ∏ 

v =1 

T ∏ 

t=1 

[ N (x v (t) | μgv (t) , σgv ) βgv t ] 
r v (t) 

(1 − βgv t ) 1 −r v (t) 

G ∑ 

g=1 

θg 

V ∏ 

v =1 

T ∏ 

t=1 

[ N (x v (t) | μgv (t) , σgv ) βgv t ] 
r v (t) 

(1 − βgv t ) 1 −r v (t) 

. 

(6) 

Similarly to [24] , we introduce a Bayesian extension and put in- 

ormative priors over the parameters of the normal distribution, 

hich enforces smoothness over time and that clusters containing 
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Algorithm 2 Time series cluster kernel. Training phase. 

Require: Training set of MTS { (X (n ) , R (n ) ) } N n =1 , Q initializations, set 

of integers I C controlling number of components for each base 

model. 

1: Initialize kernel matrix K = 0 N×N . 

2: for q ∈ Q do 

3: Compute posteriors �(n ) (q ) ≡ (π (n ) 
1 

, . . . , π(n ) 
q 2 

) T , by fitting a 

mixed mode mixture model with q 2 clusters to the dataset and 

by randomly selecting: 

i. hyperparameters 
(q ) , 

ii. a time segment T (q ) of length T min ≤ |T (q ) | ≤ T max to 

extract from each X (n ) and R (n ) , 

iv. a subset of attributes V(q ) , with cardinality V min ≤|V(q ) | ≤ V max , to extract from each X (n ) and R (n ) , 

vi. a subset of MTS, η(q ) , with N min ≤ | η(q ) | ≤ N, 

vii. initialization of the mixture parameters �(q ) and �(q ) . 

4: Update kernel matrix, K nm 

= K nm 

+ 

�(n ) (q ) T �(m ) (q ) 

‖ �(n ) (q ) ‖·‖ �(m ) (q ) ‖ . 
5: end for 

Ensure: K kernel matrix, time segments T (q ) , subsets of attributes 

V(q ) , subsets of MTS η(q ) , parameters �(q ) , �(q ) and posteri- 

ors �(n ) (q ) . 

Algorithm 3 Time series cluster kernel. Test phase. 

Require: Test set 
{

X ∗(m ) 
}M 

m =1 
, time segments T (q ) subsets of at- 

tributes V(q ) , V R (q ) , subsets of MTS η(q ) , parameters �(q ) , 

�(q ) and posteriors �(n ) (q ) . 

1: Initialize kernel matrix K 

∗ = 0 N×M 

. 

2: for q ∈ Q do 

3: Compute posteriors �∗(m ) (q ) , m = 1 , . . . , M using the mix- 

ture parameters �(q ) , �(q ) . 

4: Update kernel matrix, K 

∗
nm 

= K 

∗
nm 

+ 

�(n ) (q ) T �∗(m ) (q ) 

‖ �(n ) (q ) ‖·‖ �∗(m ) (q ) ‖ . 
5: end for 

Ensure: K 

∗ test kernel matrix. 

4

p

b

T  

i

v

m

s

d

s

i

p

f

M

r

i  

�

t

m

a

e

i

ew time series, to have parameters similar to the mean and co- 

ariance computed over the whole dataset. A kernel-based Gaus- 

ian prior is defined for the mean, P (μgv ) = N 

(
μgv | m v , S v 

)
.m v are 

he empirical means and the prior covariance matrices, S v , are de- 

ned as S v = s v K, where s v are empirical standard deviations and 

is a kernel matrix, whose elements are K t t ′ = b 0 exp (−a 0 (t −
 

′ ) 2 ) , t , t ′ = 1 , . . . , T . a 0 , b 0 are user-defined hyperparameters. An

nverse Gamma distribution prior is put on the standard deviation 

gv , P (σgv ) ∝ σ
−N 0 
gv exp 

(
− N 0 s v 

2 σ 2 
gv 

)
, where N 0 is a user-defined hyper- 

arameter. We denote 
 = { a 0 , b 0 , N 0 } the set of hyperparameters. 

Then, given a dataset { U 

(n ) } N 
n =1 

, the parameters { �, �} can be

stimated using maximum a posteriori expectation maximization 

MAP-EM) [44,45] . This leads to Algorithm 1 . 

lgorithm 1 MAP-EM for mixed mode mixture model. 

equire: Dataset { U 

(n ) = (X (n ) , R (n ) ) } N 
n =1 

, hyperparameters 
 and 

number of mixtures G . 

1: Initialize the parameters � = (θ1 , . . . , θG ) and � = 

{ μg , σg , βg } G g=1 
. 

2: E-step. For each MTS U 

(n ) , evaluate the posterior probabilities 

using Eq. (6) with the current parameter estimates. 

3: M-step. Update parameters using the current posteriors 

θg = N 

−1 ∑ N 
n =1 π

(n ) 
g 

σ 2 
gv = 

N 0 s 
2 
v + 

∑ N 
n =1 

∑ T 
t=1 r 

(n ) 
v (t) π(n ) 

g 

(
x (n ) 

v (t) − μgv (t) 
)2 

N 0 + 

∑ N 
n =1 

∑ T 
t=1 r 

(n ) 
v (t) π(n ) 

g 

μgv = 

S −1 
v m v + σ−2 

gv 
∑ N 

n =1 π
(n ) 
g diag (r (n ) 

v ) x (n ) 
v 

S −1 
v + σ−2 

gv 
∑ N 

n =1 π
(n ) 
g diag (r (n ) 

v ) 

βgv t = ( 
∑ N 

n =1 π
(n ) 
g ) −1 

∑ N 
n =1 π

(n ) 
g r (n ) 

v (t) 

4: Repeat step 2-3 until convergence. 

nsure: Posteriors �(n ) ≡
(
π(n ) 

1 
, . . . , π(n ) 

G 

)T 

and parameter esti- 

mates � and �. 

.1. Forming the kernel 

We now explain how the mixed mode mixture model is used 

o form the TCK IM 

kernel. 

We use the mixed mode Bayesian mixture model as the base 

odel in an ensemble approach. To ensure diversity, we vary the 

umber of components for the base models by sampling from a 

et of integers I C = { I, . . . , I + C} . For each number of components,

e apply Q different random initial conditions and hyperparame- 

ers. We let Q = { q = (q 1 , q 2 ) | q 1 = 1 , . . . Q, q 2 ∈ I C } be the index

et keeping track of initial conditions and hyperparameters ( q 1 ), 

nd the number of components ( q 2 ). Each base model q is trained

n a random subset of MTS { (X (n ) , R (n ) ) } n ∈ η(q ) . Moreover, for each

, we select random subsets of variables V(q ) as well as random 

ime segments T (q ) . 

The inner products of the normalized posterior distributions 

rom each mixture component are then added up to build the 

CK IM 

kernel matrix. Note that, in addition to introducing novel 

ase models to account for informative missingness, we also mod- 

fy the kernel by normalizing the vectors of posteriors to have 

nit length in the l 2 -norm. This provides an additional regulariza- 

ion that may increase the generalization capability of the learned 

odel. The details of the method are presented in Algorithm 2 . 

he kernel for MTS not available during training can be evaluated 

ccording to Algorithm 3 . 
4 
. Semi-supervised time series cluster kernel 

This section presents a semi-supervised MTS kernel, ssTCK, ca- 

able of exploiting incomplete label information. In ssTCK, the 

ase mixture models are learned exactly in the same way as in 

CK or TCK IM 

, i.e. if there is no missing data, or the missingness

s ignorable, the base models will be the Bayesian GMMs. Con- 

ersely, if the missingness is informative, the base models are the 

ixed mode Bayesian mixture models presented in the previous 

ection. Both approaches will associate each MTS X (n ) with a q 2 - 

imensional posterior �(n ) ≡
(
π(n ) 

1 
, . . . , π(n ) 

q 2 

)T 

, where π(n ) 
g repre- 

ents the probability that the MTS belongs to component g and q 2 
s the total number of components in the base mixture model. 

In ssTCK, label information is incorporated in an intermediate 

rocessing step in which the posteriors �(n ) are transformed, be- 

ore the transformed posteriors are sent into Algorithms 2 and 3 . 

ore precisely, the transformation consists in mapping the poste- 

ior for the mixture components to a class “posterior” (probability), 

.e. we seek to find a function M : [0 , 1] q 2 → [0 , 1] N c , �(n ) M −→
˜ (n ) . Hence, we want to exploit the incomplete label information 

o find a transformation that merges the q 2 components of the 

ixture model into N c clusters, where N c is the number of classes. 

The mapping M can be thought of as a (soft) N c -class classifier, 

nd hence there could be many possible ways of learning M . How- 

ver, choosing a too flexible classifier for this purpose leads to an 

ncreased risk of overfitting and could also unnecessarily increase 
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Table 1 

Accuracy on the synthetic VAR(1) dataset. 

Unsupervised Semi-supervised Supervised 

TCK 0.826 0.854 0.867 

TCK IM 0.933 0.967 0.970 
he algorithmic complexity. For these reasons, we restrict ourselves 

o searching for a linear transformation 

 (�(n ) ) = W 

T �(n ) , W ∈ [0 , 1] q 2 ×N c . (7) 

ince the N c -dimensional output ˜ �(n ) = M (�(n ) ) should represent 

 probability distribution, we add the constraint 
∑ N c 

i =1 
W ji = 1 , j = 

 , . . . , q 2 . 

A natural first step is to first assume that the label information 

s complete and look at the corresponding supervised kernel. In the 

ollowing two subsections, we describe our proposed methods for 

earning the transformation M in supervised and semi-supervised 

ettings, respectively. 

.1. Supervised time series cluster kernel (sTCK) 

Supervised setting. Each base mixture model consists of q 2 com- 

onents, and we assume that the number of components is greater 

r equal to the number of classes N c . Further, assume that each 

TS X (n ) in the training set is associated with a N c –dimensional 

ne-hot vector y (n ) , which represents its label. Hence, the labels 

f the training set can be represented via a matrix Y ∈ { 0 , 1 } N×N c ,

here N is the number of MTS in the training set. 

We approach this problem by considering one component at 

he time. For a given component g, the task is to associate it with

 class. One natural way to do this is to identify all members of 

omponent g and then simply count how many times each label 

ccur. To account for class imbalance, one can then divide each 

ount by the number of MTS in the corresponding class. One pos- 

ible option would then be to assign the component to the class 

ith the largest normalized count. However, by doing so, one is 

ot accounting for uncertainty/disagreement within the compo- 

ent. Hence, a more elegant alternative is to simply use the nor- 

alized counts as the weights in the matrix W . Additionally, one 

as to account for that each MTS can simultaneously belong to sev- 

ral components, i.e. each MTS X (n ) has a only soft membership to 

he component g, determined by the value π(n ) 
g . This can be done 

sing �(n ) as weights in the first step. This procedure is summa- 

ized in Algorithm 4 . 

lgorithm 4 Supervised posterior transformation. 

equire: Posteriors { �(n ) } N n =1 from mixture models consisting of 

q 2 components and labels { y (n ) } N 
n =1 

, 

1: for i = 1 , . . . , q 2 , j = 1 , . . . , N c do 

2: Compute W i j = 

∑ N 
n =1 y 

(n ) 
j 

π(n ) 
i ∑ N 

n =1 y 
(n ) 
j 

. 

3: W i j = 

W i j ∑ N c 
j=1 

W i j 

. 

4: end for 

5: Transform training and test posteriors via ˜ � = W 

T �

nsure: Transformed posteriors ˜ �(n ) 

.2. Semi-supervised time series cluster kernel (ssTCK) 

Setting Assume that the labels { y (n ) } L 
n =1 

, L < N, are known and

 y (n ) } N 
n = L +1 

are unknown. 

In this setting, if one naively tries to apply Algorithm 4 based 

n only the labeled part of the dataset, one ends up dividing by 0s. 

he reason is that some of the components in the mixture model 

ill contain only unlabeled MTS (the soft label analogy is that the 

robability that any of the labeled MTS belong to that particular 

omponent is zero or very close to zero). Hence, we need a way 

o assign labels to the components that do not contain any labeled 

TS. 
5 
Note that each component is described by a probability distri- 

ution. A natural measure of dissimilarity between probability dis- 

ributions is the Kullback–Leibler (KL) divergence [46] . Moreover, 

ince the components are described by parametric distributions, 

he KL divergence has a simple closed-form expression. The KL di- 

ergence between two components, i and j, in our Bayesian GMM 

s given by 

 KL ( f (i ) ‖ f ( j) ) = 

1 

2 

( V ∑ 

v =1 

T ∑ 

t=1 

σ 2 
i v σ

−2 
jv + σ−2 

jv (μ jv (t) 

− μi v (t)) 2 − 1 + log (σ 2 
jv ) − log (σ 2 

i v ) 
)
, (8) 

here f (i ) = f (X | R, μi , �i ) is the density given in Eq. (4) . The

L-divergence can be made symmetric via the transformation 

 

S 
KL ( f (i ) ‖ f ( j) ) = 

1 

2 

(
D KL ( f (i ) ‖ f ( j) ) + D KL ( f ( j) ‖ f (i ) ) 

)
. (9) 

he underlying idea in our semi-supervised framework is to learn 

he transformation W for the clusters with only unlabeled points 

y finding the nearest cluster (in the D 

S 
KL 

-sense) that contain la- 

eled points. This leads to Algorithm 5 . 

lgorithm 5 Semi-supervised posterior transformation. 

equire: Posteriors { �(n ) } N n =1 from mixture models consisting of 

q 2 components, labels { y (n ) } L 
n =1 

, and hyperparameter h . 

1: for i = 1 , . . . , q 2 , j = 1 , . . . , N c do 

2: Compute W i j = 

∑ N 
n =1 y 

(n ) 
j 

π(n ) 
i ∑ N 

n =1 y 
(n ) 
j 

. 

3: end for 

4: for all k s.t. 
∑ N c 

j=1 
W k j < h do 

5: Let L = { l s.t. ∑ N c 
j=1 

W l j ≥ h } 
6: W k j = W l j where l = arg min 

l∈L 
D 

S 
KL 

( f (k ) ‖ f (l) ) . 

7: end for 

8: for i = 1 , . . . , q 2 , j = 1 , . . . , N c do 

9: W i j = 

W i j ∑ N c 
j=1 

W i j 

. 

0: end for 

11: Transform training or test posterior via ˜ � = W 

T �

nsure: Transformed posteriors ˜ �(n ) 

. Experiments on synthetic and benchmark datasets 

The experiments in this paper consists of two parts. The pur- 

ose of the first part was to demonstrate within a controlled en- 

ironment situations where the proposed TCK IM 

and ssTCK ker- 

els might prove more useful than the TCK. In the second part 

 Section 6 ), we present a case study from a real-world medical ap- 

lication in which we compared to several baseline methods. 

In the first part, we considered synthetic and benchmark 

atasets. The following experimental setup was considered. We 

erformed kernel principal component analysis (KPCA) using time 

eries cluster kernels and let the dimensionality of the embed- 

ing be 10. Thereafter, we trained a kNN-classifier with k = 1 on 

he embedding and evaluated performance in terms of classifi- 

ation accuracy on an independent test set. We let Q = 30 and 
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Table 2 

Description of benchmark time series datasets. Column 2 to 5 show the number of 

attributes, samples in training and test set, and number of classes, respectively. T min 

is the length of the shortest MTS in the dataset and T max the longest MTS. T is the 

length of the MTS after the transformation. 

Datasets Attributes Train Test N c T min T max T Source 

uWave 3 200 4278 8 315 315 25 UCR 

Char.Traj. 3 300 2558 20 109 205 23 UCI 

Wafer 6 298 896 2 104 198 25 Olsz. 

Japan.vow. 12 270 370 9 7 29 15 UCI 
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Table 3 

Classification accuracy for benchmark datasets 

obtained using TCK, ssTCK and sTCK. 

Datasets TCK ssTCK sTCK 

Char. Traj. 0.908 0.928 0.934 

uWave 0.867 0.881 0.894 

Wafer 0.956 0.970 0.970 

Japanese vowels 0.946 0.962 0.968 
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2 Matlab implementation: http://www.mustafabaydogan.com/ . 
3 Matlab implementation: http://www.marcocuturi.net/GA.html . 
 C = { N c , . . . , N c + 20 } . An additional hyperparameter h was intro-

uced for ssTCK. We set h to 10 −1 in our experiments. We also 

tandardized each attribute to zero mean and unit standard devia- 

ion. 

.1. Synthetic example 

To illustrate the effectiveness of the proposed methods, we 

rst considered a controlled experiment in which a synthetic MTS 

ataset with two classes was sampled from a first-order vector au- 

oregressive model, 

x 1 (t) 
x 2 (t) 

)
= 

(
α1 

α2 

)
+ 

(
ρ1 0 

0 ρ2 

)(
x 1 (t − 1) 
x 2 (t − 1) 

)
+ 

(
ξ1 (t) 
ξ2 (t) 

)
(10) 

o make x 1 (t) and x 2 (t) correlated with corr (x 1 (t) , x 2 (t)) = ρ, we

hose the noise term s.t., corr ( ξ1 (t) , ξ2 (t) ) = ρ (1 − ρ1 ρ2 ) [(1 −
2 
1 
)(1 − ρ2 

2 
)] −1 . For the first class ( y = 1 ), we generated 100 two-

ariate MTS of length 50 for the training and 100 for the test, 

rom the VAR(1)-model with parameters ρ = ρ1 = ρ2 = 0 . 8 and 

 [(x 1 (t) , x 2 (t)) T | y = 1] = (0 . 5 , −0 . 5) T . Analogously, the MTS of

he second class ( y = 2 ) were generated using parameters ρ = 

0 . 8 , ρ1 = ρ2 = 0 . 6 and E [(x 1 (t) , x 2 (t)) T | y = 2] = (0 , 0) T . 

To simulate MNAR and inject informative missing patterns, we 

et x (n ) 
i 

(t) have a probability p (n ) of being missing, given that 

 

(n ) 
i 

(t) > −1 , i = 1 , 2 . We let p (n ) = 0 . 9 if y (n ) = 1 and p (n ) = 0 . 8

therwise. By doing so, the missing ratio was roughly 63% in both 

lasses. 

Table 1 shows the accuracy on the test data for the different 

ernels. As expected, the TCK gives the lowest accuracy, 0.826. The 

sTCK improves the accuracy considerably (0.854), and the super- 

ised version (sTCK) gives further improvement (0.867). However, 

s we can see, the effect of explicitly modelling the missingness 

echanism in the TCK IM 

is larger. In this case the accuracy in- 

reases from 0.826 to 0.933. The two corresponding embeddings 

re plotted in Fig. 1 (a) and (d), respectively. In the TCK embedding, 

here are many points from different classes that overlap with each 

ther, whereas for the TCK IM 

the number of overlapping points is 

uch lower. 

The ssTCK IM 

improves the accuracy to 0.967 (from 0.933 for 

CK IM 

and 0.854 for ssTCK). The two embeddings obtained using 

he semi-supervised methods are shown in Fig. 1 (b) and (e). The 

upervised version sTCK IM 

yields a slight improvement in terms of 

ccuracy compared to ssTCK IM 

(0.970 vs. 0.967). Plots of the super- 

ised embeddings are shown in Fig. 1 (c) and (f). We can see that

or the sTCK IM 

the classes are clearly separated. 

.2. Performance of ssTCK on benchmark datasets 

The purpose of the experiments reported in the following para- 

raph was to evaluate the impact of incorporating incomplete label 

nformation in the ssTCK. Towards that end, we considered bench- 

ark datasets and artificially modified the number of labeled MTS 

n the training sets. We applied the proposed ssTCK to four MTS 

enchmark datasets from the UCR and UCI databases [47,48] and 
6 
ther published work [49] , described in Table 2 . Since some of 

he datasets contain MTS of varying length, we followed the ap- 

roach of Wang et al. [50] and transformed all the MTS in the 

ame dataset to the same length, T , determined by T = 

⌈ 

T max ⌈ 
T max 

25 

⌉ 
⌉ 

, 

here T max is the length of the longest MTS in the dataset and 

 � is the ceiling operator. The number of labeled MTS was set to 

ax { 20 , 3 · N c } . ssTCK was compared to ordinary TCK and sTCK (as-

uming complete label information in the latter case). 

Table 3 shows the performance of ssTCK for the 4 benchmark 

atasets. As we can see, compared to TCK, the accuracy in general 

ncreases using ssTCK. For the Wafer dataset, ssTCK yields the same 

erformance as the supervised kernel. For the three other datasets, 

he performance of ssTCK is slightly worse than sTCK. These exper- 

ments demonstrate that ssTCK is capable of exploiting incomplete 

abel information. 

Further, we created 8 datasets by randomly removing 50% 

nd 80%, respectively, of the values in each of the 4 benchmark 

atasets. As we can see from the results presented in Table 4 , also

n presence of missing data the accuracy in general increases using 

sTCK, compared to TCK. 

For comparison, in Table 4 we also added the results obtained 

sing three other kernels; GAK, the linear kernel, and LPS. GAK and 

he linear kernel cannot process incomplete MTS and therefore we 

reated complete datasets using mean imputation for these two 

ernels. LPS 2 was run using default hyperparameters, with the ex- 

eption that we adjusted the segment length to be sampled from 

he interval [6 , 0 . 8 T ] to account for the relatively short MTS in our

atasets. In accordance with [51] , for GAK 

3 we set the bandwidth 

to 0.1 times the median distance of all MTS in the training set 

caled by the square root of the median length of all MTS, and the 

riangular parameter to 0.2 times the median length of all MTS. 

istances were measured using the canonical metric induced by 

he Frobenius norm. In the linear kernel we set the constant c to 

. As we can see, the performance of these kernels is considerably 

orse than the time series cluster kernels for 7 out of 8 datasets. 

or uWave with 50% missingness, the performance of GAK and the 

inear kernel is similar to the TCK kernels. 

http://www.mustafabaydogan.com/
http://www.marcocuturi.net/GA.html
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Fig. 1. Plot of the two-dimensional KPCA representation of the synthetic data obtained using 6 different time series cluster kernels. The datapoints are colour-coded according 

to their labels. 

Table 4 

Classification accuracy for benchmark datasets obtained using TCK, ssTCK and sTCK. 

Missing rate Datasets TCK ssTCK sTCK GAK Linear LPS 

50% Char. Traj. 0.751 0.780 0.797 0.588 0.589 0.127 

uWave 0.812 0.834 0.850 0.828 0.813 0.411 

Wafer 0.956 0.970 0.972 0.792 0.791 0.823 

Japanese vowels 0.929 0.948 0.947 0.827 0.824 0.746 

80% Char. Traj. 0.282 0.310 0.331 0.194 0.192 0.062 

uWave 0.589 0.592 0.603 0.441 0.464 0.234 

Wafer 0.926 0.934 0.934 0.796 0.805 0.819 

Japanese vowels 0.809 0.836 0.847 0.473 0.489 0.389 
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.3. Exploiting informative missingness in benchmark datasets 

To evaluate the effect of modelling the missing patterns in 

CK IM 

, we generated 8 versions of the Wafer and Japanese vow- 

ls datasets by manually injecting missing elements using the fol- 

owing procedure. For each attribute v ∈ { 1 , . . . , V } , a number c v ∈
−1 , 1 } was randomly sampled with equal probabilities. If c v = 1 ,

he attribute v is positively correlated with the labels, otherwise 

egatively correlated. For each MTS X (n ) and attribute, a miss- 

ng rate γn v was sampled from the uniform distribution U[0 . 3 + E ·
 v · (y (n ) − 1) , 0 . 7 + E · c v · (y (n ) − 1)] . This ensures that the overall

issing rate of each dataset is approximately 50%. y (n ) ∈ { 1 , . . . N c }
s the label of the MTS X (n ) and E is a parameter, which we tune

or each dataset in such a way that the absolute value of the Pear- 

on correlation between the missing rates for the attributes γv and 

he labels y (n ) takes the values { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 } , respectively.

he higher the value of the Pearson correlation, the higher is the 

nformative missingness. 
7 
Table 5 shows the performance of the proposed TCK IM 

and 

hree baseline models (TCK, TCK B , and TCK 0 ). The first baseline is 

rdinary TCK, which ignores the missingness mechanism. For the 

afer dataset, the performance of this baseline was quite similar 

cross all four settings. For the Japanese vowels dataset, the per- 

ormance actually decreases as the information in the missing pat- 

erns increases. In the second baseline, TCK B , we tried to model 

he missing patterns by concatenating the binary missing indica- 

or MTS R to the MTS X and creating a new MTS with 2 V at-

ributes. Then, we trained ordinary TCK on this representation. For 

he Wafer dataset, the performance decreases considerably as the 

nformative missingness increases. For the Japanese vowels, this 

aseline yields the best performance when the correlation is 20% . 

owever, the performance actually decreases as the informative 

issingness increases. Hence, informative missingness is not cap- 

ured with this baseline. In the last baseline, TCK 0 , we investigated 

f it is possible to capture informative missingness by imputing ze- 

os for the missing values and then training the TCK on the im- 
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Table 5 

Classification accuracy on benchmark datasets that contain missing data. 

Correlation TCK TCK B TCK 0 TCK IM TCK TCK B TCK 0 TCK IM 

Wafer Japanese vowels 

0.2 0.951 0.951 0.951 0.955 0.938 0.954 0.951 0.940 

0.4 0.961 0.953 0.955 0.961 0.932 0.938 0.938 0.941 

0.6 0.961 0.900 0.965 0.996 0.922 0.946 0.924 0.962 

0.8 0.958 0.893 0.963 1.000 0.922 0.924 0.935 0.968 

uWave Character trajectories 

0.2 0.763 0.457 0.755 0.841 0.854 0.742 0.847 0.851 

0.4 0.807 0.587 0.813 0.857 0.851 0.788 0.842 0.867 

0.6 0.831 0.674 0.837 0.865 0.825 0.790 0.824 0.871 

0.8 0.834 0.699 0.844 0.884 0.839 0.707 0.853 0.901 
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uted data. This baseline yields similar performance across all 4 

ettings for the Wafer dataset, and for Japanese vowels, TCK 0 has 

 similar behaviour as TCK B , i.e. it does not capture informative 

issing patterns. The proposed TCK IM 

achieves the best accuracy 

or 7 out of 8 settings and has the expected behaviour, namely that 

he accuracy increases as the correlation between missing values 

nd class labels increases. The performance is similar to TCK when 

he amount of information in the missing patterns is low, whereas 

CK is clearly outperformed when the informative missingness is 

igh. This demonstrates that TCK IM 

effectively utilizes informative 

issing patterns. 

To also test if TCK IM 

is capable of exploiting other types of 

nformative missingness, we generated 8 versions of uWave and 

haracter trajectories datasets using the following approach. Both 

f these datasets consists of 3 attributes. For each attribute v ∈ 

 1 , . . . , V } , a number c v ∈ {−1 , 1 } was randomly sampled with 

qual probabilities. For the attribute(s) with c v = −1 , we let it be

egatively correlated with the labels by sampling the missing rate 

n v from U[0 . 7 − E · (y (n ) − 1) , 1 − E · (y (n ) − 1)] . For the attribute

ith c v = 1 , we let it be positively correlated with the labels by

ampling the missing rate γn v from U[0 . 3 + E · (y (n ) − 1) , 0 . 6 + E ·
y (n ) − 1)] . We let each element with x (n ) 

v (t) > μv have a prob-

bility γn v of being missing, where μv is the mean of attribute 

 computed over the complete dataset. The fact that the prob- 

bility of being missing depends on the missing values means 

hat, within each class, the missingness mechanism is MNAR. We 

uned the parameter E such that the mean absolute value of the 

earson correlation between γv and the labels took the values 

 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 } . By doing so, the overall missing rate was ap-

roximately 32% for uWave and 45% for the Characters. However, 

e note that in this case the overall missing rate varies slightly as 

 function of the Pearson correlation. 

Table 5 shows the performance on the 8 datasets created from 

Wave and Char. traj. One thing to notice here is the poor per- 

ormance of TCK B . This demonstrates the importance of using the 

ixed mode mixtures to model the two modalities in U = (X, R ) .

o naively apply TCK based on the GMMs to the concatenated 

TS do not provide the desired performance. Further, we see that 

CK IM 

achieves the best accuracy for 7 out of 8 settings and the 

ccuracy increases as the correlation increases. For the Characters, 

he performance of TCK IM 

is similar to TCK for low correlation but 

ncreases as the missingness information increases, whereas the 

erformance of TCK actually decreases. One possible explanation 

s that for this dataset, two of the variables were positively corre- 

ated with the labels and therefore the missing rate increases with 

ncreasing correlation. Regarding the results for uWave, it is a bit 

urprising that the largest difference in performance between TCK 

nd TCK IM 

occurs when the correlation is lowest. There might be 

everal reasons to this: a peculiarity of the dataset and/or that the 

NAR missingness created missing patterns that negatively affect 

CK. 
c

8 
. Case study: detecting infections among patients undergoing 

olon rectal cancer surgery 

In this case study, the focus was to detect Surgical Site Infec- 

ion (SSI), which is one of the most common types of nosocomial 

nfections [52] and represents up to 30% of hospital-acquired infec- 

ions [53,54] . The importance of the topic of SSI prediction is re- 

ected in several recent initiatives. For instance, the current study 

s part of a larger research effort by the current team, on SSI pre- 

iction and detection of postoperative adverse events related to 

astrointestinal surgery within the context of improving the quality 

f surgery [25,28,55–58] . Clearly, the reason for this massive inter- 

st is that a reduction in the number of postoperative complica- 

ions such as SSI will be of great benefit both for the patients and 

or the society. 

Many studies have shown that laboratory tests, and blood tests 

n particular, are especially important predictors for SSI, both pre- 

nd post-operatively [56,57,59–67] . Therefore, blood tests provided 

he basis also for this case study. 

.1. Data collection 

Ethics approval for the parent study was obtained from the 

ata Inspectorate and the Ethics Committee at the University Hos- 

ital of North Norway (UNN) [58] . In [58] , a cohort consisting of 

741 patients was identified by extracting the electronic health 

ecords for all patients that underwent a gastrointestinal surgical 

rocedure at UNN in the years 2004–2012. In this case study, we 

ere particularly interested in detecting SSI, which is an infection 

articularly associated with colorectal cancer surgery [68] . There- 

ore, patients who did not undergo this type of surgery were ex- 

luded, reducing the size of the cohort to 1137 patients. 

In collaboration with a clinician (author A. R.), we extracted 

ata for 11 of the most common blood tests from the pa- 

ient’s EHRs. The value of a patient’s blood test, e.g. his or hers 

emoglobin level, can be considered as a continuous variable over 

ime. However, blood tests are usually measured on a daily ba- 

is, and therefore, for the purpose of the current analysis, we dis- 

retized time and let each time interval be one day. Hence, the 

lood samples could naturally be represented as MTS and needed 

o further feature preprocessing in our framework. 

All blood tests were not available every day for each patient, 

hich means that the dataset contained missing data, and we ex- 

ected the missing patterns to be informative since whether a test 

s performed depends on whether the doctor thinks it is needed. 

e focused on detection of SSI within 10 days after surgery and 

herefore the length of the time series is 10. Patients with no 

ecorded lab tests during the period from postoperative day 1 until 

ay 10 were removed from the cohort, which lead to a final cohort 

onsisting of 858 patients. The average proportion of missing data 
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Table 6 

List of extracted blood tests and their corresponding 

missing rates. 

Attribute nr. Blood test Missing rate 

1 Hemoglobin 0.646 

2 Leukocytes 0.727 

3 C-Reactive Protein 0.691 

4 Potassium 0.709 

5 Sodium 0.712 

6 Creatinine 0.867 

7 Thrombocytes 0.921 

8 Albumin 0.790 

9 Carbamide 0.940 

10 Glucose 0.921 

11 Amylase 0.952 
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n the cohort was 80.7%. Table 6 shows a list of the blood tests we

onsidered in this study and their corresponding missing rate. 

Guided by input from clinicians, the International Classification 

f Diseases (ICD10) or NOMESCO Classification of Surgical Proce- 

ures (NCSP) codes related to severe postoperative complications 

ere considered to identify the patients in the cohort that devel- 

ped postoperative SSI. Patients that did not have these codes and 

id not have the word “infection” in any of their postoperative text 

ocuments were considered as controls. This lead to a dataset with 

27 infected patients (cases) and 631 non-infected patients (con- 

rol). 

.2. Experimental setup 

The objective of this case study was to evaluate how the 

roposed MTS kernels perform in a real-world application from 

edicine. We would like to emphasize that the proposed kernels 

re mainly designed for situations when there are no, or only a 

ew, ground-truth labels available. However, in order to evaluate 

he quality of these kernels, we adopted a supervised scheme. 

ence, we followed the scheme presented in Fig. 2 , i.e. we com- 

uted the kernel from the MTS representations of the blood tests 

nd performed KPCA, followed by kNN classification in the KPCA 

pace. We set the dimensionality of the KPCA-representation to 10 

n all experiments. The number of neighbors k was set using 5-fold 

ross validation. 

Four baseline kernels were considered, namely TCK, LPS, GAK 

nd the linear kernel. GAK and the linear kernel cannot work on 

ncomplete datasets, and therefore, we created 2 complete datasets 
Fig. 2. Overview of the approach taken to detect 

9 
sing mean and LOCF imputation. In order to investigate if it is 

ossible to better exploit the information from the missing pat- 

erns for the LPS, GAK and linear kernels, we also created baselines 

y concatenating the binary indicator MTS R (n ) to the MTS X (n ) . 

We performed 5-fold cross validation and reported results in 

erms of F1-score, sensitivity, specificity and accuracy. Sensitivity is 

he fraction of actual positives (has SSI) correctly classified as pos- 

tive, whereas specificity is the fraction of actual negatives that are 

orrectly classified as negative. F1-score is the harmonic mean of 

recision and sensitivity, where precision is the fraction of actual 

ositives among all those that are classified as positive cases. 

.3. Results 

Table 7 shows the performance in terms of 4 evaluation metrics 

or 11 baseline kernels as well as the proposed TCK IM 

kernel on 

he task of detecting patients suffering from SSI. We see that the 

ernels that rely on imputation performs much worse than other 

ernels in terms of F1-score, sensitivity and accuracy. These meth- 

ds do, however, achieve a high specificity. However, any classi- 

er can achieve a specificity of 1 simply by classifying all cases as 

egative, but this of course leads to lower F1-score and sensitiv- 

ty. The main reasons why these methods do not perform better 

re probably that the imputation methods introduce strong biases 

nto the data and that the missingness mechanism is ignored. The 

CK and LPS kernels perform quite similarly across all 4 evaluation 

etrics (LPS slightly better). The F1-score, sensitivity and accuracy 

chieved for these methods are considerably higher than the corre- 

ponding scores for the GAK and linear kernel. One of the reasons 

hy these methods perform better than the imputation methods 

s that ignoring the missingness leads to lower bias than replac- 

ng missing values with biased estimates. The performance of the 

inear kernel and GAK improves a bit by accounting for informa- 

ive missingness, whereas the performance of LPS decreases. TCK IM 

erforms similarly to the baselines in terms of specificity, but con- 

iderably better in terms of F1-score, sensitivity and accuracy. This 

emonstrates that the missing patterns in the blood test time se- 

ies are informative and the TCK IM 

is capable of exploiting this 

nformation to improve performance on the task of detecting pa- 

ients with infections. 

Fig. 3 shows KPCA embeddings corresponding to the two largest 

igenvalues obtained using 5 different kernels. While the represen- 

ations obtained using GAK and the linear kernel are noisy and to 

 large degree mix the infected and non-infected patients, the two 
postoperative SSI from MTS blood samples. 
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Table 7 

Performance (mean ± se) on the SSI dataset. The best results are in bold. 

Kernel F1-score Sensitivity Specificity Accuracy 

Ignore TCK 0 . 726 ± 0 . 045 0 . 678 ± 0 . 035 0 . 930 ± 0 . 024 0.863 ± 0.023 

missingness LPS 0 . 746 ± 0 . 035 0 . 696 ± 0 . 056 0 . 939 ± 0 . 019 0 . 875 ± 0 . 016 

Impute GAK LOCF 0 . 570 ± 0 . 045 0 . 484 ± 0 . 059 0 . 924 ± 0 . 022 0 . 808 ± 0 . 017 

GAK mean 0 . 629 ± 0 . 046 0 . 502 ± 0 . 059 0 . 966 ± 0 . 023 0.843 ±0.016 

Linear LOCF 0 . 557 ± 0 . 058 0 . 480 ± 0 . 073 0 . 914 ± 0 . 017 0 . 800 ± 0 . 018 

Linear mean 0 . 599 ± 0 . 030 0 . 489 ± 0 . 041 0 . 948 ± 0 . 043 0 . 826 ± 0 . 024 

Informative LPS IM 0 . 720 ± 0 . 062 0 . 661 ± 0 . 069 0 . 937 ± 0 . 036 0 . 863 ± 0 . 032 

GAK IM+ LOCF 0 . 669 ± 0 . 015 0 . 586 ± 0 . 024 0 . 940 ± 0 . 021 0 . 846 ± 0 . 011 

GAK IM+ mean 0 . 696 ± 0 . 030 0 . 617 ± 0 . 033 0 . 945 ± 0 . 022 0.856 ±0.011 

Linear IM+ LOCF 0 . 628 ± 0 . 016 0 . 529 ± 0 . 030 0 . 945 ± 0 . 011 0 . 834 ± 0 . 005 

Linear IM+ mean 0 . 668 ± 0 . 037 0 . 568 ± 0 . 033 0.951 ± 0.030 0 . 850 ± 0 . 021 

TCK IM 0.802 ± 0.016 0.806 ± 0.027 0 . 927 ± 0 . 017 0.895 ± 0.010 

Fig. 3. Plot of the two-dimensional KPCA representation of the colon rectal cancer surgery patients obtained using 5 kernels. 
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lasses (SSI and non-SSI) are more separated in the representations 

btained using TCK and LPS. The TCK IM 

is even better at forcing 

he SSI patients to stay in the same region or cluster while it at 

he same time spreads out the patients without infection, reveal- 

ng the diversity among these patients. 

. Conclusions and future directions 

In this work, we presented robust multivariate time series ker- 

els capable of exploiting informative missing patterns and incom- 

lete label information. In contrast to other frameworks that ex- 

loit informative missingness [5,21] , which need complete label 

nformation, the time series cluster kernels are specially designed 

or situations in which no labels or only a few labels are avail- 

ble. Lack of labels and large amounts of missing data are two 

hallenges that characterize the medical domain, and therefore, we 
10 
hink the proposed kernels will be particularly useful in this do- 

ain, which we also demonstrated in this work through a case 

tudy of postoperative infections among colon rectal cancer pa- 

ients. However, the kernels are not limited to this domain. We 

elieve that these kernels could be useful tools in other applica- 

ion domains facing similar challenges. 

A limitation of TCK IM 

is that if the missingness is by no means 

orrelated with the outcome of interest, there will be limited gain 

n performance compared to the TCK, or might even a decrease in 

erformance. For this reason it is important that the user has some 

omain knowledge and has some understanding about the process 

hat led to missing values in the data, as illustrated in our case 

tudy from healthcare. 

An other limitation of the time series cluster kernels is that 

hey are designed for MTS of the same length. A possible next 

tep would be to work on a formulation that can deal with vary- 
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ng length. In further work, we would also like to investigate the 

ossibility of introducing a Bayesian formulation for the discrete 

odality in the mixed mode mixture models by putting informa- 

ive priors over the parameters in the Bernoulli part of the model. 
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