1,419 research outputs found

    Attentional demand influences strategies for encoding into visual working memory

    Get PDF
    Visual selective attention and visual working memory (WM) share the same capacity-limited resources. We investigated whether and how participants can cope with a task in which these 2 mechanisms interfere. The task required participants to scan an array of 9 objects in order to select the target locations and to encode the items presented at these locations into WM (1 to 5 shapes). Determination of the target locations required either few attentional resources (“popout condition”) or an attention-demanding serial search (“non pop-out condition”). Participants were able to achieve high memory performance in all stimulation conditions but, in the non popout conditions, this came at the cost of additional processing time. Both empirical evidence and subjective reports suggest that participants invested the additional time in memorizing the locations of all target objects prior to the encoding of their shapes into WM. Thus, they seemed to be unable to interleave the steps of search with those of encoding. We propose that the memory for target locations substitutes for perceptual pop-out and thus may be the key component that allows for flexible coping with the common processing limitations of visual WM and attention. The findings have implications for understanding how we cope with real-life situations in which the demands on visual attention and WM occur simultaneously. Keywords: attention, working memory, interference, encoding strategie

    Correction of Bathymetric Survey Artifacts Resulting from Apparent Wave-Induced Vertical Position of an AUV

    Get PDF
    Recent increases in the capability and reliability of autonomous underwater vehicles (AUVs) have provided the opportunity to conduct bathymetric seafloor surveys in shallow water (\u3c 50 m). Unfortunately, surveys of this water depth may contain artifacts induced by large amplitude wave motion at the surface. The artifacts occur when an onboard pressure sensor determines the depth of the AUV. Waves overhead induce small pressure fluctuations at depth, which modulate the AUV’s pressure sensor output without causing actual vertical movement of the AUV. Since bathymetric measurements are made with respect to the AUV’s depth, these pressure fluctuations, in turn, modulate the measurement of the seafloor. The result is a periodic across-track, vertical offset of the seafloor profile (similar to a heave artifact sometimes common in surface vessel surveys). In this paper we describe our experience with the “Gavia” model AUV (Hafmynd EHF, Iceland) in a recent bathymetric survey during which wave action overhead induced such an artifact with a peak-to-peak amplitude as large as 1 meter. A method for removing the artifact as well as recommendations for modifications to the sonar, INS and AUV to mitigate the effect in the future are provided

    The Hall instability of weakly ionized, radially stratified, rotating disks

    Get PDF
    Cool weakly ionized gaseous rotating disk, are considered by many models as the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluids in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and thus perhaps initiating the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure

    Designing Improved Sediment Transport Visualizations

    Get PDF
    Monitoring, or more commonly, modeling of sediment transport in the coastal environment is a critical task with relevance to coastline stability, beach erosion, tracking environmental contaminants, and safety of navigation. Increased intensity and regularity of storms such as Superstorm Sandy heighten the importance of our understanding of sediment transport processes. A weakness of current modeling capabilities is the ability to easily visualize the result in an intuitive manner. Many of the available visualization software packages display only a single variable at once, usually as a two-dimensional, plan-view cross-section. With such limited display capabilities, sophisticated 3D models are undermined in both the interpretation of results and dissemination of information to the public. Here we explore a subset of existing modeling capabilities (specifically, modeling scour around man-made structures) and visualization solutions, examine their shortcomings and present a design for a 4D visualization for sediment transport studies that is based on perceptually-focused data visualization research and recent and ongoing developments in multivariate displays. Vector and scalar fields are co-displayed, yet kept independently identifiable utilizing human perception\u27s separation of color, texture, and motion. Bathymetry, sediment grain-size distribution, and forcing hydrodynamics are a subset of the variables investigated for simultaneous representation. Direct interaction with field data is tested to support rapid validation of sediment transport model results. Our goal is a tight integration of both simulated data and real world observations to support analysis and simulation of the impact of major sediment transport events such as hurricanes. We unite modeled results and field observations within a geodatabase designed as an application schema of the Arc Marine Data Model. Our real-world focus is on the Redbird Artificial Reef Site, roughly 18 nautical miles offshor- Delaware Bay, Delaware, where repeated surveys have identified active scour and bedform migration in 27 m water depth amongst the more than 900 deliberately sunken subway cars and vessels. Coincidently collected high-resolution multibeam bathymetry, backscatter, and side-scan sonar data from surface and autonomous underwater vehicle (AUV) systems along with complementary sub-bottom, grab sample, bottom imagery, and wave and current (via ADCP) datasets provide the basis for analysis. This site is particularly attractive due to overlap with the Delaware Bay Operational Forecast System (DBOFS), a model that provides historical and forecast oceanographic data that can be tested in hindcast against significant changes observed at the site during Superstorm Sandy and in predicting future changes through small-scale modeling around the individual reef objects

    Gambaran Berat Jenis Urin Pada Pasien Tuberkulosis Paru Dewasa Di Rsup Prof. Dr. R. D. Kandou Manado

    Full text link
    : Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium Tuberculosis. Drugs that given to the TB patients such as isoniazid, pyrazinamide, ethambutol, streptomycin, and rifampicin. Rifampicin and streptomycin can damage the kidneys and can changes in the urine specific gravity. This study aims to describe the specific gravity of urine in adult pulmonary TB patients in the department of Prof. Dr. R. D. Kandou Manado. This research uses descriptive observational method by means of random consecutive sampling to obtain data on the weight of the urine in adult pulmonary TB patients conducted in October-November 2016 in the department Prof. Dr. R. D. Kandou Manado. The sample used is a urine sample from pulmonary TB patient with inclusion criteria. The result of urine specific gravity test that obtained from 30 patients with pulmonary tuberculosis, 27 patients (90%) with the results of 1010-1025, 1 patient (3.33%) with the results of the urine specific gravity ≀1.005, and 2 patients with the results of the urine specific gravity ≄ 1030. outpatients have an average urine specific gravity higher than inpatients. Overview urine specific gravity in this study largely still in the normal range
    • 

    corecore