
University of New Hampshire
University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping

10-2010

Correction of Bathymetric Survey Artifacts
Resulting from Apparent Wave-Induced Vertical
Position of an AUV
Val E. Schmidt
University of New Hampshire, Durham, Val.Schmidt@unh.edu

Nicole A. Raineault
University of Rhode Island

Adam Skarke
University of Delaware

Arthur Trembanis
University of Delaware

Larry A. Mayer
University of New Hampshire, larry.mayer@unh.edu

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New
Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Schmidt, Val E.; Raineault, Nicole A.; Skarke, Adam; Trembanis, Arthur; and Mayer, Larry A., "Correction of Bathymetric Survey
Artifacts Resulting from Apparent Wave-Induced Vertical Position of an AUV" (2010). Canadian Hydrographic Conference (CHC).
793.
https://scholars.unh.edu/ccom/793

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/72054722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom_home?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom/793?utm_source=scholars.unh.edu%2Fccom%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


 

Correction of Bathymetric Survey Artifacts Resulting 
Apparent Wave-Induced Vertical Position of an AUV   
Val Schmidt, Nicole Raineault, Adam Skarke, Art Trembanis, Larry Mayer  
1 October, 2010 
Version 2 



Introduction 
Recent increases in the capability and reliability of autonomous underwater vehicles 
(AUVs) have provided the opportunity to conduct bathymetric seafloor surveys in 
shallow water (< 50 m). Unfortunately, surveys of this water depth may contain artifacts 
induced by large amplitude wave motion at the surface. The artifacts occur when an on-
board pressure sensor determines the depth of the AUV. Waves overhead induce small 
pressure fluctuations at depth, which modulate the AUV’s pressure sensor output without 
causing actual vertical movement of the AUV. Since bathymetric measurements are made 
with respect to the AUV’s depth, these pressure fluctuations, in turn, modulate the 
measurement of the seafloor. The result is a periodic across-track, vertical offset of the 
seafloor profile (similar to a heave artifact sometimes common in surface vessel surveys). 
In this paper we describe our experience with the “Gavia” model AUV (Hafmynd EHF, 
Iceland) in a recent bathymetric survey during which wave action overhead induced such 
an artifact with a peak-to-peak amplitude as large as 1 meter. A method for removing the 
artifact as well as recommendations for modifications to the sonar, INS and AUV to 
mitigate the effect in the future are provided. 
 
A brief note on terminology: The term “heave” as used in this paper is defined as the 
vertical displacement of the AUV with respect to the surface (the AUV’s depth). This 
convention is used in surface ship surveying and in the AUV’s Geoacoustics bathymetric 
sonar. Unfortunately, the term “heave” is defined by the AUV’s inertial navigation 
system and internal logs as vertical velocity of the AUV. Every effort will be made to 
reduce confusion between these definitions. 

The Gavia  
The Gavia is a modular AUV having the ability to tailor the module make-up for a given 
mission (Figure 1.). The system used in this study included a “Geoswath” 500kHz, phase-
measuring bathymetric sonar (PMBS) module from Geoacoustics (Kongsberg), a 
navigation module combining a 1200 kHz doppler-velocity log (DVL) from RD 
Instruments and a SEANAV T-24 inertial navigation system (INS) from Kearfott. While 
submerged, the AUV operates independently of any external navigation system, relying 
on DVL and INS operation completely.  
 



 
Figure 1. Gavia AUV with module make-up used in this study. 

 
 

The Mission  
On July 28-29, 2009 bathymetric survey missions were run in the vicinity of the Martha’s 
Vineyard Coastal Observatory, South of the island of Martha’s Vineyard, MA. The 
surveys were run for the purposes of seafloor characterization. Particularly high data 
density was desired, therefore swath widths were limited to 40 m and spacing between 
lines to just 10 m. Previous work in this area has shown the area to be exceedingly flat, 
varying just 40-50 cm over several hundred meters. Two sediment types dominate the 
area; a coarse grained sand and a medium/fine grained sand which are arranged in large 
patches. Coarse grained areas have well-formed, orbital-scale ripples (typically less than 
10 cm in amplitude), oriented in the predominant wave direction, while the median/fine 
grained sand areas have chaotic bedforms of small amplitude. 
 
 



 
Figure 2 Survey track of the Gavia AUV. 

 
When operating the AUV for seafloor surveys the Gavia is placed in bottom-tracking 
mode to maximize the quality of the resulting bathymetry. In this mode, the AUV 
maintains a constant depth above the bottom, as measured by the INS (with DVL input). 
An altitude of 6 meters was maintained for this survey. Total water depth in the survey 
area is 11 to 13 meters.  
 
Nominal survey speed for the AUV was 1.7 m/s through water. A west-to-east current of 
~0.5 m/s resulted in speeds over ground generally between 1.2 and 2.3 m/s.  
 

Results 
Initial processing of the swath bathymetry data was conducted using both the 
Geoacoustics  GS+ processing suite and separately by an internally developed set of 
MATLAB tools. Both processing options filter the data for outliers, georeference each 
sounding and finally grid (and perhaps smooth) these into a final surface. The MATLAB 
software does not currently correct for refraction of the acoustic signals in the water 
column, however errors due to that omission are separate and distinct from the artifacts 
discussed here. Results on one swath of sonar data processing with MATLAB are shown 
in Figure 3.  
 



 
Figure 3. Shown is a single swath of bathymetric sonar data collected from the Gavia AUV.  Surface waves over-
head produced pressure fluctuations recorded by the AUV’s pressure sensor that resulted in across-track 
modulation of the seafloor. 

Artifacts are clearly evident in the data as undulations in the seafloor that follow the 
heading of the AUV through turns and other maneuvers. To illustrate them better, a 
single line of data has been processed with no overlapping line segments, shown in 
Figure 3. Peak-to-peak, the artifacts may be as large as 1 meter and have a roughly 4-8 
second period. 
 
The cause of these artifacts was initially unknown, and a thorough investigation was 
begun. Synchronization of the sonar with the AUV’s 1-Pulse-per-second timing signal 
was verified, as well as the timing of all ancillary data streams. Lever arm offsets for the 
INS and transducers were verified to be correct. The across-track nature of the artifact is 
was not consistent with a roll alignment bias of the sonar with respect to the inertial 
navigation system. Although a pitch alignment bias can produce artifacts of this nature by 
incorrectly estimating the vertical displacement of the sonar due to a rotation around the 
athwartships axis, the lever arm from the pressure sensor port on the control module to 
the sonar is too short to cause the magnitude of oscillation observed. Finally the effect of 
pressure transients from large amplitude waves at the surface was suggested by the period 
of the artifact.   
 
Mean wave height and period data were collected from the nearby Martha’s Vineyard 
Coastal Observatory to test this hypothesis. The velocity potential of a progressive linear 
wave in the absence of significant currents and in which the viscosity and surface tension 
may be neglected is given by the following (Dean and Dalrymple, pg 62, eq 3.42). 
 

€ 

φ = −
Hg
2σ

cosh(k(z + h)
cosh(kh)

sin(kx −σt)
       1 

 
In 1 above, H is the peak-to-peak surface wave height, g is the acceleration of gravity, h 
is the total water depth, z is the height in the water column, k is the wave number and 

€ 

σ  
is the angular frequency defined as

€ 

σ 2 = gk tanh(kh). The height, z, is 0 at the surface and 
equal to h at the bottom. The hydrostatic pressure of such a wave is calculated as 
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P = ρ
∂φ
∂t           2

 

 
where ρ is the density of the fluid. Substituting the velocity potential gives 
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P =
H
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gρ cosh(k(h + z))

cosh(kh)
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The amplitude of the pressure oscillation felt by the AUV at a depth, z, due to surface 
swell of peak-to-peak amplitude H is then given by 
 

€ 

P =
H
2
gρ cosh(k(h + z))

cosh(kh)         4
 

 
The hydrostatic pressure due to a column of water of depth z’ above the AUV is given by 
 

€ 

P = ρgz'          5 
 
Therefore we may equate Equations 4 and 5 and calculate the error in AUV’s depth 
estimate introduced by surface swell as a function of the AUV’s depth, z, and the swell 
height, H. The depth error, z’ is then 
 

€ 

z'= H
2
cosh(k(h + z))
cosh(kh)          6

 

 
 
Wave data from the Martha’s Vineyard Coastal Observatory were obtained from the 
period the survey was conducted. Wave height (average crest to trough height of the one-
third highest waves) is plotted in Figure 3 showing values from 3-6 feet. Wave period is 
plotted in Figure 4, showing values of 4-6 seconds.  

 
 

Figure 3. Wave height for the week of July 26-Aug 1, 2009 

Figure 4. Wave period for the week of July 26-Aug 1 2009 as observed by the MVCO. 



 
 
The wavelength can be calculated from the following relations for wave speed, c wave 
number, k and wave period, T, 
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c 2 =
σ 2

k 2
, 
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k =
2π
λ

, 
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λ =
c
T         7

 

 
Substituting the expression for the angular velocity,

€ 

σ , from above into the first equation 
gives 
 

€ 

c 2 =
gtanh(kh)

k          8
 

 
We consider the case in which the wavelength, 

€ 

λ , is much greater then the water depth, 
h. Under these circumstances 

€ 

tan(kh) ≈1, and the expression becomes 
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c 2 =
g
k            9

 

 
Combining the remaining equations and solving for wavelength gives 
 

€ 

λ =
gT 2

2π           10
 

 
Substituting values from the Martha’s Vineyard Coastal Observatory data for wave 
period (5 s) and wave height (4ft, 1.2 m) into the equations for wavelength, 

€ 

λ , and depth 
error expression, 

€ 

ʹ′ z , gives the depth error profile plotted in Figure 5. 
 
 



 
Figure 5. Amplitude of the depth error incurred due to pressure fluctuations resulting from surface waves as a 
function of AUV depth for 5 second period waves with a 4 ft (1.2 m) wave height in an area of 12 m total water 

depth.  

 
During the survey, average AUV depth ranged from 5-7 meters, Figure 5 then predicts an 
error of 0.8-1.0 m in AUV vertical position and subsequent bathymetric measurement due 
to surface waves observed during the survey. Surface waves were considered the most 
likely cause the artifact observed in the measured bathymetry.   

The solution 
Familiarity with surface ship navigation systems lead us to consider the methods used in 
those systems to constrain vertical biases in ship position. Surface ship navigation 
systems typically implement a “heave filter” which constrains vertical drift of the 
navigation solution by a-priori knowledge that the mean vertical position of the ship is 
zero (the water’s surface).  Such an assumption cannot be made for an AUV whose 
vertical position in the water column is constantly changing. Therefore this method was 
rejected. 
 
Filtering of the AUV’s pressure sensor data with respect to time was also considered. A 
frequency spectra of the pressure sensor data was plotted. It was hoped that this spectra 
would be bi-modal, having modes due to movement of the AUV in the water column and 
distinctly different modes due to surface waves. Unfortunately the spectra was uni-modal 
indicating that any attempt to filter the swell from the pressure sensor data would remove 
actual movement of the AUV, resulting in additional unwanted biases in the bathymetry. 
Therefore, this method was rejected.  
 



Altitude above the sea floor as measured from the AUV’s DVL was considered as a 
method to constrain the movement of the AUV in the water column such that oscillations 
in the pressure signal due to swell could be isolated from those due to the AUV’s 
movement. This method was also rejected, as it requires a-priori knowledge of the 
bathymetry.  
 
As the investigation ensured, the following details about the AUV’s operation and 
subsystems were learned: 
 

• The control module’s pressure sensor serial output is captured by a “Rabbit” 
electronics board, which reformats the data, converts it to depth and subsequently 
broadcasts it on the AUV’s internal Ethernet network. Density of the seawater is 
not considered in this calculation. 

• The Geoswath sonar passively monitors the AUV’s internal network, capturing 
pressure data packets, time stamping them and recording them in the “AUX1” 
data channel within the sonar’s RDF data file.  

• In post-processing, the GS+ software utilizes the depth recorded in the AUX1 
channel as the depth from which all subsequent sonar measurements are reported 
by default. 

• The Geoswath maintains a sense of time by time-stamping the receipt of a 1-PPS 
signal provided by the AUV’s GPS unit. (This signal is generated even after the 
AUV submerges and no further GPS fixes are obtained.) The timestamp is 
compared to that received by a subsequent ASCII timing message from the INS. 
The Geoswath then step-corrects its clock to the 1-PPS signal.  

• The SEANAV INS serial output is received by its own Rabbit electronics board. 
This Rabbit board reformats the SEANAV data for (at least) two purposes. One 
message is broadcast to the Geoswath. A second message is sent to the control 
module for navigation. (Both via Ethernet.) 

• The term “heave,” as defined by the Seanav output message, is the vertical 
velocity of the AUV. The “heave” field, as defined in the MRU message sent 
from the rabbit board in the Seanav is vertical position, however this field is set to 
zero.  

• The SEANAV’s estimate of the depth of the AUV is derived from its own internal 
sensors and the control module’s pressure measurement. Double integration of the 
INS accelerometers, combined with single integration of the vertical component 
of the DVL produce a real-time depth estimate. This depth estimate is then 
constrained by depth input from the pressure sensor through a “second-order, 
critically damped, feedback loop having a 100 second time constant” (Don 
Weber, Kearfott).  

 
From this information, it was seen that the SEANAV inertial navigation system should 
capture real vertical movements of the AUV in the water column. Because the pressure-
depth feedback loop had been implemented with a 100-second time constant, variations 
in the pressure sensor occurring over periods less than 100 seconds should be removed.  
Therefore surface wave action having a period of 4-6 seconds would be completely 
removed from the SEANAV’s depth estimate.  



 
To test the hypothesis, the SEANAV depth estimate was substituted for the pressure 
sensor depth in the post-processing of Geoswath data files. To accomplish this 
substitution, new ASCII text attitude files containing a time stamp, pitch, roll and heave 
were imported and applied to the Geoswath data using the GS+ software suite. These 
files were generated by first extracting the pitch and roll measurements with their 
associated time stamps from the original RDF data files. SEANAV depth records 
recorded by the Gavia’s internal logging system were then corrected for a time stamp 
offset and then interpolated to the RDF attitude time stamps. Finally the original time 
stamps, pitch, roll and the new heave values derived from the SEANAV depth estimate 
were used for subsequent manual processing in MATLAB or written to new attitude files 
and imported into GS+.  
 

 
 

 
Figure 6. Seafloor bathymetry with surface wave artifact (top) and after use of Seanav provided depth (bottom). 
Both plots have identical color scales – red-to-blue approximately 1 m. 

 
The result of substituting the SEANAV depth estimate for the pressure sensor depth is 
shown in Figure 6 along with the original plot. Artifacts attributed to surface wave 
motion are nearly completely removed. Some residual swell artifacts remain and are 
likely to result from the a failure of the Gavia’s logging system to capture depth data at a 
rate meeting the Nyquist sample criteria for the artifact-causing pressure fluctuations.  
 
Although Gavia’s standard logging system provides depth values at 0.5 Hz intervals, 
recent (2010) upgrades to the unit allow for raw recording of the binary SEANAV data 
stream providing depth estimates at 20 Hz. This rate is expected to provide sufficient 
bandwidth for most situations.  
 



 
Figure 7 Grid of bathymetric data when the SEANAV depth estimate has been used in lieu of the pressure 
sensor measurement. The profile below along the line drawn on the grid shows relief spanning only 10 cm, 
consistent with previous surveys in the area. 

 
A grid created from the full bathymetric data set is shown in Figure 7. Sand wave ripples 
in areas of fine-grained sand, which were previously occluded by the swell artifact, are 
now clearly evident.  
 



 
Figure 8 Long term drift of the SEANAV depth estimate from the pressure sensor measurement. 

 
The SEANAV depth estimate is not without error however. A plot of the SEANAV depth 
estimate and the pressure depth shows a growing offset between the two. Indeed a close 
examination of the gridded data above shows a shoaling of the seafloor to the bottom of 
the image (South), when indeed Marthas Vineyard is to the North.  
 
Investigation over a summer’s worth of surveys (10 or more) shows a very similar drift 
between the SEANAV depth estimate and the pressure sensor measurement. That is to 
say, the drift is generally linear with a rate commensurate with that shown here. The 
cause of this growing bias and the inability of the pressure sensor to constrain the 
SEANAV depth estimate over long time periods is an area of continued investigation and 
debate.  
 

Conclusion and Recommendations 
Shallow water bathymetric surveys from an AUV operating under large surface swell 
may contain artifacts due to fluctuations in the AUV’s estimate of vertical position in the 
water column, when that position is determined by an onboard pressure sensor. An 
example of these artifacts has been presented and shown to agree with the theoretical 
pressure fluctuations that would have been expected under the measured conditions 
(swell period, amplitude and water depth) at the time of the survey. Use of the AUV’s 
inertial navigation system for depth estimation removed these artifacts by estimating 
actual movement of the vehicle rather than movement of the sea surface as before. 
Unfortunately, the inertial depth estimate has been shown to drift over the course of a 
survey inducing a long term offset in the resulting bathymetry, for which additional 
corrections are required.   
 
Bathymetric surveys under swell conditions in relatively shallow water are expected to be 
plagued with these kinds of artifacts. One desires a single mode of operation capable of 
reliably determining the AUV’s depth in any environment. Toward that end the following 



recommendations are suggested for the Gavia AUV outfitted with a Kearfott SEANAV 
INS as used in this survey. 
 
 

1. Injection of the SEANAV depth estimate for the “heave” field in data supplied to 
the Geoswath sonar in real-time (this value is currently zero). In addition, 
modification of the GS+ processing suite to accept the heave field in lieu of the 
“AUX1” pressure depth by default. 
 
Drift of the SEANAV depth estimate from the mean pressure depth will require 
an additional correction. The offset of the mean SEANAV depth estimate to the 
mean pressure measurement at the end of the mission (when the AUV returns to 
the surface) should provide a reasonable estimate of the linear drift rate. The drift 
corrector than then be calculated from this drift rate over the duration of the 
mission and applied to the data, perhaps along with the tidal correction. 
 

2. The SEANAV pressure feedback loop should be further investigated and perhaps 
modified to further constrain the SEANAV depth estimate to the long-term 
pressure average. Initial discussions with Kearfott indicate that the current 
behavior of the feedback loop may be as designed. None-the-less, for 
hydrographic applications it is inadequate to sufficiently constrain the AUV’s 
position in the water column alone.  
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