51 research outputs found

    A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei

    Get PDF
    The lack of general class II transcription factors was a hallmark of the genomic sequences of the human parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. However, the recent identification of TFIIA as part of a protein complex essential for RNA polymerase II-mediated transcription of SLRNA genes, which encode the trans splicing-specific spliced leader RNA, suggests that trypanosomatids assemble a highly divergent set of these factors at the SLRNA promoter. Here we report the identification of a trypanosomatid TFIIB-like (TFIIB(like)) protein which has limited overall sequence homology to eukaryotic TFIIB and archaeal TFB but harbors conserved residues within the N-terminal zinc ribbon domain, the B finger and cyclin repeat I. In accordance with the function of TFIIB, T.brucei TFIIB(like) is encoded by an essential gene, localizes to the nucleus, specifically binds to the SLRNA promoter, interacts with RNA polymerase II, and is absolutely required for SLRNA transcription

    Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex

    Get PDF
    Trypanosoma brucei is a member of the early-diverged, protistan family Trypanosomatidae and a lethal parasite causing African Sleeping Sickness in humans. Recent studies revealed that T. brucei harbors extremely divergent orthologues of the general transcription factors TBP, TFIIA, TFIIB and TFIIH and showed that these factors are essential for initiating RNA polymerase II-mediated synthesis of spliced leader (SL) RNA, a trans splicing substrate and key molecule in trypanosome mRNA maturation. In yeast and metazoans, TFIIH is composed of a core of seven conserved subunits and the ternary cyclin-activating kinase (CAK) complex. Conversely, only four TFIIH subunits have been identified in T. brucei. Here, we characterize the first protistan TFIIH which was purified in its transcriptionally active form from T. brucei extracts. The complex consisted of all seven core subunits but lacked the CAK sub-complex; instead it contained two trypanosomatid-specific subunits, which were indispensable for parasite viability and SL RNA gene transcription. These findings were corroborated by comparing the molecular structures of trypanosome and human TFIIH. While the ring-shaped core domain was surprisingly congruent between the two structures, trypanosome TFIIH lacked the knob-like CAK moiety and exhibited extra densities on either side of the ring, presumably due to the specific subunits

    Identification of a Novel Chromosomal Passenger Complex and Its Unique Localization during Cytokinesis in Trypanosoma brucei

    Get PDF
    Aurora B kinase is a key component of the chromosomal passenger complex (CPC), which regulates chromosome segregation and cytokinesis. An ortholog of Aurora B was characterized in Trypanosoma brucei (TbAUK1), but other conserved components of the complex have not been found. Here we identified four novel TbAUK1 associated proteins by tandem affinity purification and mass spectrometry. Among these four proteins, TbKIN-A and TbKIN-B are novel kinesin homologs, whereas TbCPC1 and TbCPC2 are hypothetical proteins without any sequence similarity to those known CPC components from yeasts and metazoans. RNAi-mediated silencing of each of the four genes led to loss of spindle assembly, chromosome segregation and cytokinesis. TbKIN-A localizes to the mitotic spindle and TbKIN-B to the spindle midzone during mitosis, whereas TbCPC1, TbCPC2 and TbAUK1 display the dynamic localization pattern of a CPC. After mitosis, the CPC disappears from the central spindle and re-localizes at a dorsal mid-point of the mother cell, where the anterior tip of the daughter cell is tethered, to start cell division toward the posterior end, indicating a most unusual CPC-initiated cytokinesis in a eukaryote

    Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein.

    Get PDF
    In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target
    corecore