5,262 research outputs found
An Analytical Investigation Using Aerodynamic Limitations of Several Designs of High Stage Pressure Ratio Multistage Compressors
Asymmetric Light Bending in the Equatorial Kerr Metric
The observation of the bending of light by mass, now known as gravitational
lensing, was key in establishing general relativity as one of the pillars of
modern physics. In the past couple of decades, there has been increasing
interest in using gravitational lensing to test general relativity beyond the
weak deflection limit. Black holes and neutron stars produce the strong
gravitational fields needed for such tests. For a rotating compact object, the
distinction between prograde and retrograde photon trajectories becomes
important. In this paper, we explore subtleties that arise in interpreting the
bending angle in this context and address the origin of seemingly contradictory
results in the literature. We argue that analogies that cannot be precisely
quantified present a source of confusion
Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent
Fish can be exposed to a variety of neuroactive pharmaceuticals via the effluent discharges from wastewater treatment plants and concerns have arisen regarding their potential impacts on fish behaviour and ecology. In this study, we investigated the uptake of 14 neuroactive pharmaceuticals from a treated wastewater effluent into blood plasma and brain regions of roach (Rutilus rutilus) after exposure for 15 days. We show that a complex mixture of pharmaceuticals including, 6 selective serotonin reuptake inhibitors, a serotonin-noradrenaline reuptake inhibitor, 3 atypical antipsychotics, 2 tricyclic antidepressants and a benzodiazepine, concentrate in different regions of the brain including the telencephalon, hypothalamus, optic tectum and hindbrain of effluent-exposed fish. Pharmaceuticals, with the exception of nordiazepam, were between 3–40 fold higher in brain compared with blood plasma, showing these neuroactive drugs are readily uptaken, into brain tissues in fish. To assess for the potential for any adverse ecotoxicological effects, the effect ratio was calculated from human therapeutic plasma concentrations (HtPCs) and the measured or predicted fish plasma concentrations of pharmaceuticals. After accounting for a safety factor of 1000, the effect ratios indicated that fluoxetine, norfluoxetine, sertraline, and amitriptyline warrant prioritisation for risk assessment studies. Furthermore, although plasma concentrations of all the pharmaceuticals were between 33 and 5714-fold below HtPCs, alterations in serotonin, glutamate, acetylcholine and tryptophan concentrations were observed in different brain regions of effluent-exposed fish. This study highlights the importance of determining the potential health effects arising from the concentration of complex environmental mixtures in risk assessment studies
Modeling the Mutualistic Interactions between Tubeworms and Microbial Consortia
The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In the model, L. luymesi releases the sulfate generated by its internal, chemoautotrophic, sulfide-oxidizing symbionts through posterior root-like extensions of its body. The sulfate fuels sulfate reduction, commonly coupled to anaerobic methane oxidation and hydrocarbon degradation by bacterial–archaeal consortia. If sulfate is released by the tubeworms, sulfide generation mainly by hydrocarbon degradation is sufficient to support moderate-sized aggregations of L. luymesi for hundreds of years. The results of this model expand our concept of the potential benefits derived from complex interspecific relationships, in this case involving members of all three domains of life
Metagenomic next-generation sequencing of samples from pediatric febrile illness in Tororo, Uganda.
Febrile illness is a major burden in African children, and non-malarial causes of fever are uncertain. In this retrospective exploratory study, we used metagenomic next-generation sequencing (mNGS) to evaluate serum, nasopharyngeal, and stool specimens from 94 children (aged 2-54 months) with febrile illness admitted to Tororo District Hospital, Uganda. The most common microbes identified were Plasmodium falciparum (51.1% of samples) and parvovirus B19 (4.4%) from serum; human rhinoviruses A and C (40%), respiratory syncytial virus (10%), and human herpesvirus 5 (10%) from nasopharyngeal swabs; and rotavirus A (50% of those with diarrhea) from stool. We also report the near complete genome of a highly divergent orthobunyavirus, tentatively named Nyangole virus, identified from the serum of a child diagnosed with malaria and pneumonia, a Bwamba orthobunyavirus in the nasopharynx of a child with rash and sepsis, and the genomes of two novel human rhinovirus C species. In this retrospective exploratory study, mNGS identified multiple potential pathogens, including 3 new viral species, associated with fever in Ugandan children
Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance
Abstract Background Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA), heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1) inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V). Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age-related increases in distribution of oxidative mtDNA damage in sPD but not CTL brains is not clear, tracks with but does not determine the sPD phenotype, and may indicate a unique consequence of aging present in sPD that could contribute to mtDNA deletion generation in addition to mtDNA replication, transcription and sequencing errors. sPD frontal cortex experiences a generalized bioenergetic deficiency above and beyond aging that could contribute to mood disorders and cognitive impairments.</p
Localization of Minoxidil Sulfotransferase in Rat Liver and the Outer Root Sheath of Anagen Pelage and Vibrissa Follicles
The precise biochemical mechanism and site(s) of action by which minoxidil stimulates hair growth are not yet clear. Minoxidil sulfate is the active metabolite of minoxidil, with regard to smooth muscle vasodilation and hair growth. Formation of minoxidil sulfate is catalyzed by specific PAPS-dependent sulfotransferase(s) and minoxidil-sulfating activities have been previously reported to be present in liver and hair follicles. One of these minoxidil-sulfating enzymes has been purified from rat liver (rat minoxidil sulfotransferase, MST) and a rabbit anti-MST antibody has been prepared. Using this anti-MST antibody, we have immunohistochernically localized minoxidil sulfotransferase in the liver and anagen hair follicles from rat. In rat pelage and vibrissa follicles, this enzyme is localized within the cytoplasm of epithelial cells in the lower outer root sheath. Although the immunolocalization of MST might not necessarily correlate with the MST activity known to be present in anagen follicles, the results of this study strongly suggest that the lower outer root sheath of the hair follicle may serve as a site for the sulfation of topically applied minoxidil
- …