13 research outputs found

    Element transport in the Taz River, western Siberia

    Get PDF
    The riverine export fluxes of dissolved carbon, nutrient and metals from the land to the Arctic Ocean are fairly well quantified for five large Arctic rivers but remain virtually unknown for mid-sized Eurasian rivers, notably those draining through the permafrost zone. Because such rivers can most rapidly respond to on-going climate warming and permafrost thaw in the Arctic, their current hydrochemical composition and elemental yields are badly needed for judging the level of changes in the very near future. Towards quantifying the annual export fluxes and assessing the mechanisms of seasonal variability of river solutes, we monitored the pristine subarctic Taz River (Swatershed = 150,000 km2), which drains through boreal forest and peatlands in the discontinuous and continuous permafrost zone, on a weekly to monthly basis over a 3 year period. Based on seasonal pattern of riverine solutes (70% of annual Mn flux occurred in winter. A number of elements present in the snowpack exhibited sizable (> 45%) export during spring flood (Zn, Cu, Pb, Cd, Sb and Cs). The 3 years mean export fluxes (yields) of dissolved components were comparable to or 30–50% lower than those of other large and medium sized Arctic rivers. This was due mostly to a lack of fresh unaltered rocks and a dominance of peatlands within the Taz River watershed. Elevated concentrations of redox-sensitive micro-nutrients (such as Fe and Mn) occurring during winter baseflow can be linked to disproportionally large floodplain zone of this river which can act, especially in the river's lower reaches, as a stratified lake thereby releasing high amounts of redox-sensitive elements from the sediments. The role of suboxic zones in the Arctic boreal riverine landscape may be more important than previously thought, and may allow explaining anomalously high concentrations of some metals (i.e., Mn) reported in Arctic Ocean surface waters. It is anticipated that climate warming in the region may increase the contribution of winter flow and enhance the export of soluble elements and some nutrients (such as Si, Mn and Co)

    Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events

    Get PDF
    Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p 0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system

    Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake

    No full text
    In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements

    Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands

    Get PDF
    Permafrost thaw in continental lowlands produces large number of thermokarst (thaw) lakes, which act as a major regulator of carbon (C) storage in sediments and C emission in the atmosphere. Here we studied thaw lakes of the NE European permafrost peatlands - shallow water bodies located within frozen peat bogs and receiving the majority of their water input from lateral (surface) runoff. We also conducted mesocosm experiments via interacting lake waters with frozen peat and dominant ground vegetation - lichen and moss. There was a systematic decrease in concentrations of dissolved C, CO2, nutrients and metals with an increase in lake size, corresponding to temporal evolution of the water body and thermokarst development. We hypothesized that ground vegetation and frozen peat provide the majority of C, nutrients and inorganic solutes in the water column of these lakes, and that microbial processing of terrestrial organic matter controls the pattern of CO2 and nutrient concentrations in thermokarst lakes. Substrate mass-normalized C, nutrient (N, P, K), major and trace metal release was maximal in moss mesocosms. After first 16 h of reaction, the pCO2 increased ten-fold in mesocosms with moss and lichen; this increase was much less pronounced in experiments with permafrost peat. Overall, moss and lichen were the dominant factors controlling the enrichment of the lake water in organic C, nutrients, and trace metals and rising the CO2 concentration. The global significance of obtained results is that the changes in ground vegetation, rather than mere frozen peat thawing, may exert the primary control on C, major and trace element balance in aquatic ecosystems of tundra peatlands under climate warming scenario

    Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation

    No full text
    In contrast to the large number of studies on humic waters from permafrost-free regions and oligotrophic waters from permafrost-bearing regions, the bio- and photolability of DOM from the humic surface waters of permafrost-bearing regions has not been thoroughly evaluated. Following standardized protocol, we measured biodegradation (at low, intermediate and high temperatures) and photodegradation (at one intermediate temperature) of DOM in surface waters along the hydrological continuum (depression -> stream -> thermokarst lake -> Pechora River) within a frozen peatland in European Russia. In all systems, within the experimental resolution of 5% to 10 %, there was no bio- or photodegradation of DOM over a 1-month incubation period. It is possible that the main cause of the lack of degradation is the dominance of allochthonous refractory (soil, peat) DOM in all waters studied. However, all surface waters were supersaturated with CO2. Thus, this study suggests that, rather than bio- and photodegradation of DOM in the water column, other factors such as peat pore-water DOM processing and respiration of sediments are the main drivers of elevated pCO(2) and CO2 emission in humic boreal waters of frozen peat bogs

    Hydrological and Hydrochemical Characteristics of the Iron-Manganese Meromictic Freshwater Lake Svetloe (Arkhangelsk Region)

    Get PDF
    Меромиктические водоемы – уникальная модель для изучения анаэробных процессов деструкции органического вещества, одним из которых (наряду с метаногенезом) является сульфатредукция. В результате деятельности сульфатредуцирующих бактерий в монимолимнионе этих водоемов накапливается сероводород, а в зоне хемоклина наблюдаются резкие вертикальные градиенты физико-химических условий и как следствие – развитие разнообразных микробных сообществ. В настоящей работе рассмотрены некоторые основные характеристики водной толщи меромиктического пресноводного озера Светлое, расположенного на севере Архангельской области, для которого достоверно установлен железо-марганцевый тип меромиксии. Наличие устойчивой стратификации с выделением характерных для меромиктических водоемов слоев нашло отражение в распределении изучаемых параметров. Так, в переходном слое (хемоклин) начало анаэробной зоны сопровождается резким увеличением величины электропроводности и появлением в воде растворенного сероводорода. В нижележащих горизонтах, где сохраняются достигнутые максимальные значения электропроводности, происходит накопление биогенных элементов, железа, марганца и сероводорода (в среднем 30 мкг/л); отмечено заметное снижение содержания растворенного сульфата, обусловленное его потреблением сульфатредуцирующими бактериями при генерации сероводорода. Численность сульфатредуцирующих бактерий в водной толще за все время наблюдений колебалась в интервале от 10 до 106 кл/мл, с максимумом содержания в зоне хемоклина, где также отмечены максимальные количества сероводорода (до 130 мкг/л)Meromictic lakes are a unique model for the study of the anaerobic processes of organic matter degradation, such as methanogenesis and sulphate reduction. As a result of activity of sulfate-reducing bacteria hydrogen sulfide accumulates in monimolimnion of these lakes, whereas chemocline is the area of sharp vertical gradients of physical and chemical conditions and as a consequence is the ecological niche for different planktonic microorganisms. This paper describes some characteristics of meromictic freshwater Lake Svetloe, located in the north of the Arkhangelsk region, for which iron-manganese type of meromixia was defined. The distribution of the studied parameters corresponds to the distribution of the specific for meromictic lakes water layers formed in the presence of stable stratification. In the transition layer (chemocline) a sharp decrease in the oxygen content (almost to the analytical zero) is accompanied by an equally sharp increase in the value of the water conductivity and the emergence of dissolved hydrogen sulfide in the water. In the anaerobic zone the conductivity values remain high and accumulation of nutrients, iron, manganese, and hydrogen sulphide (average 30 mg/l) occurs. Besides, the significant decrease in the content of dissolved sulphate caused by its consumption by sulfate-reducing bacteria was noted in this layer. The number of sulphate-reducing bacteria in the water column during the time of observation varied in the range of 10 – 106 cells/ml with the highest content in the chemocline zone, where the maximum amounts of hydrogen sulphide (up to 130 mg/l) were also foun

    Carbon emission from thermokarst lakes in NE European tundra

    No full text
    Emission of greenhouse gases (GHGs) from inland waters is recognized as highly important and an understudied part of the terrestrial carbon (C) biogeochemical cycle. These emissions are still poorly quantified in subarctic regions that contain vast amounts of surface C in permafrost peatlands. This is especially true in NE European peatlands, located within sporadic to discontinuous permafrost zones which are highly vulnerable to thaw. Initial measurements of C emissions from lentic waters of the Bolshezemelskaya Tundra (BZT; 200,000 km2) demonstrated sizable CO2 and CH4 concentrations and fluxes to the atmosphere in 98 depressions, thaw ponds, and thermokarst lakes ranging from 0.5 × 106 to 5 × 106 m2 in size. CO2 fluxes decreased by an order of magnitude as waterbody size increased by > 3 orders of magnitude while CH4 fluxes showed large variability unrelated to lake size. By using a combination of Landsat‐8 and GeoEye‐1 images, we determined lakes cover 4% of BZT and thus calculated overall C emissions from lentic waters to be 3.8 ± 0.65 Tg C yr−1 (99% C‐CO2, 1% C‐CH4), which is two times higher than the lateral riverine export. Large lakes dominated GHG emissions whereas small thaw ponds had a minor contribution to overall water surface area and GHG emissions. These data suggest that, if permafrost thaw in NE Europe results in disappearance of large thermokarst lakes and formation of new small thaw ponds and depressions, GHG emissions from lentic waters in this region may decrease

    Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic ocean

    No full text
    Midlatitude anthropogenic mercury (Hg) emissions and discharge reach the Arctic Ocean (AO) by atmospheric and oceanic transport. Recent studies suggest that Arctic river Hg inputs have been a potentially overlooked source of Hg to the AO. Observations on Hg in Eurasian rivers, which represent 80% of freshwater inputs to the AO, are quasi-inexistent, however, putting firm understanding of the Arctic Hg cycle on hold. Here, we present comprehensive seasonal observations on dissolved Hg (DHg) and particulate Hg (PHg) concentrations and fluxes for two large Eurasian rivers, the Yenisei and the Severnaya Dvina. We find large DHg and PHg fluxes during the spring flood, followed by a second pulse during the fall flood. We observe well-defined water vs. Hg runoff relationships for Eurasian and North American Hg fluxes to the AO and for Canadian Hg fluxes into the larger Hudson Bay area. Extrapolation to pan-Arctic rivers and watersheds gives a total Hg river flux to the AO of 44 ± 4 Mg per year (1σ), in agreement with the recent model-based estimates of 16 to 46 Mg per year and Hg/dissolved organic carbon (DOC) observation-based estimate of 50 Mg per year. The river Hg budget, together with recent observations on tundra Hg uptake and AO Hg dynamics, provide a consistent view of the Arctic Hg cycle in which continental ecosystems traffic anthropogenic Hg emissions to the AO via rivers, and the AO exports Hg to the atmosphere, to the Atlantic Ocean, and to AO marine sediments

    Hydrological and Hydrochemical Characteristics of the Iron-Manganese Meromictic Freshwater Lake Svetloe (Arkhangelsk Region)

    No full text
    Меромиктические водоемы – уникальная модель для изучения анаэробных процессов деструкции органического вещества, одним из которых (наряду с метаногенезом) является сульфатредукция. В результате деятельности сульфатредуцирующих бактерий в монимолимнионе этих водоемов накапливается сероводород, а в зоне хемоклина наблюдаются резкие вертикальные градиенты физико-химических условий и как следствие – развитие разнообразных микробных сообществ. В настоящей работе рассмотрены некоторые основные характеристики водной толщи меромиктического пресноводного озера Светлое, расположенного на севере Архангельской области, для которого достоверно установлен железо-марганцевый тип меромиксии. Наличие устойчивой стратификации с выделением характерных для меромиктических водоемов слоев нашло отражение в распределении изучаемых параметров. Так, в переходном слое (хемоклин) начало анаэробной зоны сопровождается резким увеличением величины электропроводности и появлением в воде растворенного сероводорода. В нижележащих горизонтах, где сохраняются достигнутые максимальные значения электропроводности, происходит накопление биогенных элементов, железа, марганца и сероводорода (в среднем 30 мкг/л); отмечено заметное снижение содержания растворенного сульфата, обусловленное его потреблением сульфатредуцирующими бактериями при генерации сероводорода. Численность сульфатредуцирующих бактерий в водной толще за все время наблюдений колебалась в интервале от 10 до 106 кл/мл, с максимумом содержания в зоне хемоклина, где также отмечены максимальные количества сероводорода (до 130 мкг/л)Meromictic lakes are a unique model for the study of the anaerobic processes of organic matter degradation, such as methanogenesis and sulphate reduction. As a result of activity of sulfate-reducing bacteria hydrogen sulfide accumulates in monimolimnion of these lakes, whereas chemocline is the area of sharp vertical gradients of physical and chemical conditions and as a consequence is the ecological niche for different planktonic microorganisms. This paper describes some characteristics of meromictic freshwater Lake Svetloe, located in the north of the Arkhangelsk region, for which iron-manganese type of meromixia was defined. The distribution of the studied parameters corresponds to the distribution of the specific for meromictic lakes water layers formed in the presence of stable stratification. In the transition layer (chemocline) a sharp decrease in the oxygen content (almost to the analytical zero) is accompanied by an equally sharp increase in the value of the water conductivity and the emergence of dissolved hydrogen sulfide in the water. In the anaerobic zone the conductivity values remain high and accumulation of nutrients, iron, manganese, and hydrogen sulphide (average 30 mg/l) occurs. Besides, the significant decrease in the content of dissolved sulphate caused by its consumption by sulfate-reducing bacteria was noted in this layer. The number of sulphate-reducing bacteria in the water column during the time of observation varied in the range of 10 – 106 cells/ml with the highest content in the chemocline zone, where the maximum amounts of hydrogen sulphide (up to 130 mg/l) were also foun

    Hydroclimatic controls on the isotopic (δ18 O, δ2 H, d-excess) traits of Pan-Arctic summer rainfall events

    Get PDF
    Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ18O, δ2H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ2H = 7.6⋅δ18O–1.8 (r2 = 0.96, p 0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ18O values. Yet 32% of precipitation events, characterized by lower δ18O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system
    corecore