139 research outputs found

    A Minor Dihydropyran Apocarotenoid from Mated Cultures of Blakeslea trispora

    Get PDF
    The heterocyclic C15 apocarotenoid 1 was isolated from mated cultures of the strains F986 (+) and F921 (−) of Blakeslea trispora. This new compound formed during sexual interaction is a minor constituent of the culture media and its structure was elucidated by spectroscopic data, including 2D-NMR. A plausible biosynthetic pathway involving a double degradation of β-carotene, followed by several oxidations of the resulting monocyclofarnesane C15 fragment is proposed.This research was financed by Junta de Andalucía (Grants FQM 340, CVI 910, and P08-CVI-03901) and the Spanish Government (Grant CTQ 2010-16818, subprogram BQ)

    Communic Acids: Occurrence, Properties and Use as Chirons for the Synthesis of Bioactive Compounds

    Get PDF
    Communic acids are diterpenes with labdane skeletons found in many plant species, mainly conifers, predominating in the genus Juniperus (fam. Cupresaceae). In this review we briefly describe their distribution and different biological activities (anti- bacterial, antitumoral, hypolipidemic, relaxing smooth muscle, etc.). This paper also includes a detailed explanation of their use as chiral building blocks for the synthesis of bioactive natural products. Among other uses, communic acids have proven useful as chirons for the synthesis of quassinoids (formal), abietane antioxidants, ambrox and other perfume fixatives, podolactone herbicides, etc., featuring shorter and more efficient processes

    Variaciones en el ph de la rizosfera y en el porcentaje de materia seca de vicia sativa al aplicar dos fuentes fosfatadas de baja solubilidad en un andisol del departamento de nariño, colombia

    Get PDF
    En el estudio se utilizaron seis tratamientos: el testigo (T0), sin fuentes fosfatadas (T1) y con adiciones de 25 y 50 kg/ha de P como fosforita Huila (T2 y T3) y calfós (T4 y T5). Los cambios generados por la raíz se evaluaron utilizando la solución nutritiva de Marschner Römheld y Ossenberg-Neuhaus, acondicionada con agar. El porcentaje de materia seca parcial de Vicia sativa se incrementó significativamente al aplicar 25 y 50 kg/ha de P como fosforita Huila (T2 y T3) y calfos (T5 y T6) en la localidad de Genoy. El pH de la solución agarizada sufrió disminuciones significativas a través del tiempo especialmente en los tratamientos T3 y T2.Palabras claves: pH rizosférico, Vicia sativa, Papilionoidea, fuentes fosfatadas, solubilida

    Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory, being the largest air-shower experiment in the world, offers an unprecedented exposure to neutral particles at the highest energies. Since the start of data taking more than 18 years ago, various searches for ultra-high-energy (UHE, E1017eVE\gtrsim10^{17}\,\text{eV}) photons have been performed: either for a diffuse flux of UHE photons, for point sources of UHE photons or for UHE photons associated with transient events like gravitational wave events. In the present paper, we summarize these searches and review the current results obtained using the wealth of data collected by the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on ultra-high energy photons

    The Pierre Auger Observatory Open Data

    Full text link
    The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the Observatory. The Portal included detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then the Portal has been updated and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community including professional and citizen-scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit and the technical implementation of the release of data by the largest cosmic-ray detector ever built, and anticipates its future developments.Comment: 19 pages, 8 figure

    Cosmological implications of photon-flux upper limits at ultra-high energies in scenarios of Planckian-interacting massive particles for dark matter

    Full text link
    We present a thorough search for signatures that would be suggestive of super-heavy XX particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above 108{\gtrsim}10^8\,GeV on the expected secondary by-product fluxes from XX-particle decay. Assuming that the energy density of these super-heavy particles matches that of dark matter observed today, we translate the upper bounds on the particle fluxes into tight constraints on the couplings governing the decay process as a function of the particle mass. We show that instanton-induced decay processes allow us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: \alpha_X \alt 0.09, for 10^{9} \alt M_X/\text{GeV} < 10^{19}. This upper limit on αX\alpha_X is complementary to the non-observation of tensor modes in the cosmic microwave background in the context of Planckian-interacting massive particles for dark matter produced during the reheating epoch. Viable regions for this scenario to explain dark matter are delineated in several planes of the multidimensional parameter space that involves, in addition to MXM_X and αX\alpha_X, the Hubble rate at the end of inflation, the reheating efficiency, and the non-minimal coupling of the Higgs with curvature.Comment: 15 pages, 8 figures, Accompanying paper of arXiv:2203.0885

    Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory

    Get PDF

    Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 1717 km2^2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 308030-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (XmaxX_\text{max}), a probe for mass composition, at cosmic-ray energies between 1017.510^{17.5} to 1018.810^{18.8} eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio XmaxX_\text{max} reconstruction by comparison to dedicated sets of CORSIKA/CoREAS air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio XmaxX_\text{max} resolution as a function of energy, reaching a resolution better than 1515 g cm2^{-2} at the highest energies, demonstrating that radio XmaxX_\text{max} measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.

    Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory

    Full text link
    We show, for the first time, radio measurements of the depth of shower maximum (XmaxX_\text{max}) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence data set, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio XmaxX_\text{max} resolution as a function of energy and demonstrate the ability to make competitive high-resolution XmaxX_\text{max} measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments.Comment: Submitted to Phys. Rev. Let

    Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory

    Get PDF
    A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 10¹⁸ eV). Despite the flux of these particles being extremely low, the area of ∼3000 km² covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km² sr yr, and search it for anisotropies over the 3.4π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4σ significance level for cosmic-ray energies above ∼40 EeV
    corecore