1,997 research outputs found

    Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest.

    Get PDF
    The moisture content of live fuels is an important determinant of forest flammability. Current approaches for modelling live fuel moisture content typically focus on the use of drought indices. However, these have mixed success partly because of species-specific differences in drought responses. Here we seek to understand the physiological mechanisms driving changes in live fuel moisture content, and to investigate the potential for incorporating plant physiological traits into live fuel moisture models. We measured the dynamics of leaf moisture content, access to water resources (through stable isotope analyses) and physiological traits (including leaf water potential, stomatal conductance, and cellular osmotic and elastic adjustments) across a fire season in a Mediterranean mixed forest in Catalonia, NE Spain. We found that differences in both seasonal variation and minimum values of live fuel moisture content were a function of access to water resources and plant physiological traits. Specifically, those species with the lowest minimum moisture content and largest seasonal variation in moisture (Cistus albidus: 49–137% and Rosmarinus officinalis: 47–144%) were most reliant on shallow soil water and had the lowest values of predawn leaf water potential. Species with the smallest variation in live fuel moisture content (Pinus nigra: 96–116% and Quercus ilex: 56–91%) exhibited isohydric behaviour (little variation in midday leaf water potential, and relatively tight regulation of stomata in response to soil drying). Of the traits measured, predawn leaf water potential provided the strongest predictor of live fuel moisture content (R2 = 0.63, AIC = 249), outperforming two commonly used drought indices (both with R2 = 0.49, AIC = 258). This is the first study to explicitly link fuel moisture with plant physiology and our findings demonstrate the potential and importance of incorporating ecophysiological plant traits to investigating seasonal changes in fuel moisture and, more broadly, forest flammability.This study was made possible thanks to the collaboration of and the staff from the Natural Park of Poblet, P Sopeña, and the technical staff from MedForLab. This study was funded by the Spanish Government (RYC-2012-10970, AGL2015-69151-R). R. H. Nolan was supported with funding from the New South Wales Office of Environment and Heritage, via the Bushfire Risk Management Research Hub. We benefitted from critical comments from J Voltas, JM Moreno and L Serrano and instrument loans from R Savín

    Metallochaperones Are Needed for Mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase Activity.

    Get PDF
    Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 μM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 μM) and ZnuA (1 μM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat

    Experimental reconstruction of non-stationary sound and vibration sources by means of Transient Planar Near-field Acoustic Holography

    Get PDF
    A novel algorithm called Transient Planar Near-field Acoustic Holography is presented to analyse nonstationary sound and vibration sources. The method is able to obtain the time-dependent pressure, particle velocity and intensity field at the source plane without any pre-knowledge of the source by inverse propagation of measured pressure fields. This makes it possible to analyse phenomena like transients and run-ups for all kinds of vibrating and sound radiating objects. Transient responses of thin plates are analysed to experimentally validate the performance of the algorithm. The determined velocity at the center of the plate is validated using a laser vibro-meter directed at the center of the plate and the spatial fields are qualitatively compared with theoretical mode shapes. It is shown that the algorithm is able to analyse transient responses of plates with good quantitative as well as qualitative results.</p

    Size Segregation of Granular Matter in Silo Discharges

    Full text link
    We present an experimental study of segregation of granular matter in a quasi-two dimensional silo emptying out of an orifice. Size separation is observed when multi-sized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bi-disperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bi-disperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at http://physics.clarku.edu/~akudrolli/nls.htm
    • …
    corecore