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Abstract

We apply binary classification theory to assess the (in)stability prediction accuracy of thermoa-
coustic models. It is shown that by applying such methods to compare a large set of stability
predictions and experiments it is possible to gain valuable qualitative insight in different aspects of
prediction quality. The approach is illustrated with a 2-port model and a large experimental data
set. The presented framework provides an unified and practical tool to answer questions such as (i)
What is the chance that a stable prediction will be correct? and (ii) How conservative is the model?
It is shown that the most suitable quality indicator is strongly dependent on the actual purpose of
the model. The method provides a solid starting point for model comparison and optimization.

1 Introduction

In virtually any combustion device a feedback coupling between the system’s acoustics and heat release
can lead to a rich variety of resonance phenomena named thermoacoustic instabilities. In particular, the
issue is frequently encountered during the development of low emission premixed combustion devices.
Typical examples include high performance gas turbines, industrial ovens, and domestic heating systems
[1–3]. Within the broad field of thermoacoustic instabilities there are many variations of the exact
feedback mechanism and the type of noise produced. The heat release may be excited by velocity
or mixture fluctuations for instance, whereas the noise can vary between anything from low-frequent
humming or chugging, to high frequent pure tones and beating [4, 5]. Such instabilities generally limit
the operation of the device because of unacceptable sound pressure levels or unstable flame anchoring. In
extreme cases and in high power devices such as gas-turbines, this can even lead to structural failure [5].
Accordingly, the development of accurate thermoacoustic models is an actual and practically relevant
problem.

Because of the coupled nature of the phenomena a thermoacoustic model always contains a description
of the systems acoustics, and the coupling of the acoustics to the unsteady heat release. Within such a
context many different variants are possible, ranging from lumped linear models using one dimensional
acoustic approximations [6,7], to descriptions which are able to predict transient growth and complicated
nonlinear phenomena [8, 9]. Irrespective of the specific model type however, the end goal is always
to arrive at an accurate prediction of the observed phenomena. The most basic property which any
thermoacoustic model should predict is the (in)stability of a certain system configuration. In case it will
be unstable, the frequency of the instability, the limit cycle amplitude and the occurrence of possible
mode switching become of interest. The next important question is then how to assess prediction quality.
This issue forms the main subject of the current paper.

∗Corresponding author: p.g.m.hoeijmakers@tue.nl
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Currently, the assessment of model quality is often approached in an ’ad-hoc’ sense, as the visual
discrepancy of the model predictions versus the actual instabilities when some system parameter is varied.
In [10, 11] for example, (in)stability experiments on a laboratory combustor were compared to a linear,
and later a nonlinear model [9] by varying the length of the upstream duct. In all mentioned literature
however [9–11], the model quality was inferred from comparing the visual discrepancy of the predictions
versus the experimental points. Although such an approach gives a reasonable qualitative indication it
remains difficult to answer important quantitative questions such as: ’What is the likelihood a stable
prediction will be correct? and ’How conservative is my model’?

Furthermore, most of the aforementioned literature sources only consider a relatively small set of
burner operating points, whereas in practice a combustor is often required to function over a wide
regime of flow velocities and equivalence ratios. There is no guarantee that a model which is accurate
in one operating window performs equally well in another. A similar statement can be made about the
mutual differences between various burners.

To investigate these issues, large datasets are inevitable. The larger the dataset however, the more
difficult it becomes to investigate and uncover trends using just visual inspection of the ’bare’ results only.
In fact, it is exactly this practical reason which motivated our search for usable quantitative performance
indicators in the thermoacoustic context.

In essence a thermoacoustic model makes predictions of a binary nature, either stability or instability.
The quantification of the performance of such a binary predictor is well developed problem in binary
classification theory. Numerous examples can be found in the areas of material testing, medicine and
weather forecasting [12]. In the current paper we apply binary classification theory to define quantitative
measures of the (in)stability prediction quality of thermoacoustic models. Not only does such an approach
provide us with a convenient quantitative quality assessment, it also gives valuable insight on different
aspects of the prediction performance.

The remainder of the paper is organized as follows. In the next section the theory and methods
used to arrive at a set of quantitative performance measures are described. The experimental setup and
specifics of the model are treated in section 3. Then, in section 4 the theory is applied to a complete set
of experiments and model simulations. Finally, section 5 is devoted to a discussion and summary of the
results.

2 Model quality assessment

The goal of the current section is to present the methods and theory which is needed to perform a
quantitative model quality assessment in the context of thermoacoustic stability prediction.

Before we start with the development of our approach it is worthwhile to linger on the exact meaning
of ’model’ and hence the interpretation of ’model quality’. In the wider context of the exact sciences, a
model is usually understood to be a mathematical description of the physics occurring in the real world.
To be more precise, one can distinguish between the actual mathematics and physics chosen to obtain
the description, e.g. the governing equations and their simplifications, and the (physical) parameters,
e.g. geometrical dimensions, which occur in the description. However, it is the combination of both
which in the end constitutes the full model. To assess the model’s quality, it is then common to vary
one or more parameters consecutively in model and experiment and compare their results in relevant
output parameters. In this context, the model quality is the ability of the model to capture the real
world trends. It is clear that any discrepancy of model and experiment can be the result of two sources
(i) wrongly chosen or measured parameter values, and (ii) errors in the physical description itself, e.g.
oversimplification. It is important to realize that these sources cannot (without further investigation) be
differentiated in the output of the model evaluation.

Any assessment of prediction capabilities of a thermoacoustic model starts with a set of model predic-
tions and corresponding experiments. As mentioned before, the data usually takes the form of predictions
and measurements of stability/instability when one or more of the system parameters is varied. Within
this context, many variants of the dataset are possible, and different types of parameters and/or ad-
ditional data may be gathered. Irrespective of the details however, the theory presented here is very
general and the only prerequisite is that at least data on the presence and frequency of the instability is
available.

In order to keep the theory as clear as possible, it is necessary to more precisely define the structure
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of the data. First of all, let us restrict the dataset to compare the instability of only one frequency (or
mode) per parameter setting, as is regularly done in literature, e.g. [10]. This means that in case multiple
frequency components, or modes, are present in either the simulated or experimental datasets, one should
select only one pair for the comparison and further quality assessment. Usually, this is achieved by only
comparing the dominant frequency from the experimental dataset, to the most unstable mode, i.e. with
the largest growth rate, from the simulations. This is also the method chosen in the current paper.
Although it was recently shown that there exists a strong correlation between the (linear) growth rate
and the limit cycle amplitude, it is not apparent that this is an universal law [13]. Clearly, any deviation
from the assumed correlation will be detrimental to the apparent quality of the model, and this should
be kept in mind when making statements about the model quality.

Now, we define the model simulation dataset as a collection ofN data points S = {(s1, fs1 ), ...(sN , f
s
N )},

where one element i out of the set corresponds to the (in)stability data at a specific value of a parameter,
e.g. a duct length L. For any point (si, f

s
i ), si is a boolean were 1 denotes instability, and 0 denotes

stability. In case of instability, fsi corresponds to the predicted frequency of the instability. Likewise,
the experimental dataset is given by N points, E = {(e1, fe1 ), ...(eN , f

e
N )}.

2.1 Qualitative aspects of thermoacoustic models

Without loss of generality, consider the situation were the capabilities of a model are verified using a
simple laboratory combustion geometry with (i) an inlet tube of length L1, (2) burner/flame, and (3)
exhaust tube of length L2, as found in for example [14]. Then, it is typical to vary the upstream length L1

in some way, e.g. by using a piston, and register the lengths at which it is unstable. A direct comparison
between model and experiments can be made by plotting the length L1 versus the unstable frequencies
fei and fsi . Two examples taken from the dataset described in section 3 are shown in figure 1a and b.
As noted before, only the dominant frequency from the experimental data, and the most unstable mode
from the simulations are shown.
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Figure 1: Comparison between experimental (+) and simulated instabilities (◦) as function of length
L1 of the upstream tube. (a) case 1 and (b) case 2.

A number of qualitative features about the ability of the model to capture the experimental results
become immediately apparent from the figures shown. First and foremost is the correctness of the length
ranges of the instability predictions. In case of perfect prediction, the transition points from stable to
unstable and vice versa, are on exactly the same parameter values in both experiment and simulation. It
is clear that the example cases show significant differences in this aspect of the (in)stability prediction.

Another feature is the correctness of the predicted frequencies, where it is obvious that large deviations
are not desirable.

It is usually implicitly assumed that overprediction of the unstable range, as in the example shown, is
not preferable. Although this seems a natural approach from a scientific modelling viewpoint, in practice
it in fact might be desirable to have a model which is a bit on the conservative side when it comes to
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predicting stability. As shall become apparent the ability to capture all unstable modes and a slight
overprediction are intimately linked features of all except perfect models.

It is clear that in order to make quantitative statements about model conservatism, and the reliability
for stable and unstable predictions, one has to approach the quality assessment from a more quantitative
viewpoint.

The typical examples from figure 1 could be used as a first starting point to quantitatively define
model quality. For example, one could define model quality as the ratio of the number of correctly
predicted unstable points to the total number of unstable experiments. In other words, how many of the
unstable observations were predicted as such? Alternatively, it is possible that one is more interested in
the relative amount of correct unstable predictions to total unstable predictions. The difference in the
questions is subtle, but important, whereas in the first number the wrong unstable predictions do not
influence the score, in the second number they do. In the next sections it is shown how to structurally
approach the problem using well developed methods from other branches of science.

2.2 Quantitative aspects of thermoacoustic models

In an abstract sense, the model poses a hypothesis, e.g. stable or unstable, which can be tested against
the experimental results. The goal is then to rate the ability to make a correct hypothesis. Very similar
problems occur in many other branches of science [12]. Usually however, the hypothesis is not the
outcome of a model prediction but rather of a diagnosis or test. Typical examples include testing for
the presence of disease in medicine, detection of material defects, weather forecasting, prediction of
consumer risk in finance, or the prediction of protein structures in bioinformatics. Irrespective of the
application however, a good accuracy measure is of crucial importance in order to assess the value of
the diagnosis, test, or prediction. As a result, the methods to quantitatively assess the accuracy of a
prediction, diagnosis, or test are well developed.

Similarly to the prediction of stability or instability in a thermoacoustics problem, many of these
problems reduce to assigning a certain prediction instance to one out of two classes, commonly termed
a binary classification problem. Notwithstanding the binary result, it is important to realize that the
model, diagnosis or tests often have underlying data which is continuous. In such setting, the binary
outcome is then based on whether or not a certain threshold value is exceeded. For example, the indicator
for a disease test might be the concentration of certain hormone, and if the threshold value is exceeded
the patient is considered sick. Again, this is very similar to the prediction of thermoacoustic instabilities,
in which the underlying continuous variable is the growth rate of the mode, with zero being the threshold
value. Nevertheless, the performance of the prediction, diagnosis, or test is usually assessed based on
the ability to make a correct classification.

In the following, the standard terminology from binary classification shall be used on the thermoa-
coustic instability problem.

2.2.1 Binary classification and the contingency matrix

The model predictions and the experimental results can be categorized in two possible classes (1) positive,
corresponding to unstable events and (2) negative, corresponding to stable events. In this setting, it is
clear that the comparison between simulations and experiments is completely characterized by four
possible outcomes: (i) a true positive - e.g. an unstable prediction is indeed unstable, (ii) a false positive
- e.g. an unstable prediction is in fact stable, (iii) a false negative - e.g. a stable prediction is observed
unstable, and (iv) a true negative, when a stable prediction is indeed stable. This is further summarized
in table 1, using the abbreviations TP, FP, TN, and FN. Due to the binary nature of the problem,
this is called binary classification, and the corresponding matrix is named a confusion or contingency
matrix [15,16].

Every single point resulting from comparing the simulation and experimental set can now be assigned
(classified) to one of the four possible cells. The goal is then to count the number of occurrences in each
cell. Note that the row and column totals Su, Ss denote the total number of stable and unstable
simulations, where Eu and Es are the totals for the experiments. However, because the data contains
information about both stability and frequency, one has to be careful in the exact definitions of the
various categories. In case both experiment and simulations are unstable (ei = si = 1), the difference in
predicted and observed frequency becomes of interest. Here, we only consider the instability prediction
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Exp. Unstable Exp. Stable Total
Sim. unstable TP FP Su

Sim. stable FN TN Ss

Total Eu Es

Table 1: The contingency table. TP: True positive. FP: False positive. FN: False negative. TN: True
negative.

as correct (TP) if |fei − fsi |/fei < 0.2. Thus in essence a prediction is only considered satisfactory if it
lies within a 20% margin of the observed frequency. In practice, any predicted frequency which has an
error larger than 20% results from the model considering the wrong mode number as most unstable. In
that case, we will consider it as two separate points, where one is classified as a false positive and the
other as a false negative. In this way, it only decreases model performance, but does not bias the error
measures introduced in the next section. The other possible situations are more straightforward and are
shown in table 2.

Condition Category
ei = si = 1, |fei − fsi |/fei < 0.2 TP
ei = si = 1, |fei − fsi |/fei > 0.2 FN,FP

ei = si = 0 TN
ei = 0, si = 1 FP
ei = 1, si = 0 FN

Table 2: Classification rules.

Given a set of experiments and simulations, a total overview of the comparison is obtained by counting
the number of instances in each of the four possible matrix entries. Table 3 summarizes the results for
the two example cases of figure 1. Note that the contingency matrix basically shows if the row variables
(the simulations) are contingent on the column variables (the experiments). As is clear from the example
tables, a good case tends to have the largest numbers on the diagonal terms of the matrix.

(a)

Eu Es
Su 27 25
Ss 0 11

(b)

Eu Es
Su 41 3
Ss 3 16

Table 3: The contingency matrix for (a) Case 1, and (b) Case 2, corresponding to figure 1a-b.

Although the contingency matrix gives a complete overview of the comparison between simulations
and experiments, it is not immediately clear how good the predictions are.

In the following, we will present several different performance indicators and investigate their meaning
and usefulness in the current context.

2.2.2 Performance metrics

Starting from the contingency matrix, one may derive several common performance metrics.
Let us begin with considering the portion of experimental unstable observations which were predicted

as such. This measure is usually called the true positive rate, sensitivity, hit rate, or recall:

TPR = 100
TP

TP + FN
. (1)

A similar number can be defined for the percentage of stable experiments which were predicted correctly,
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the true negative rate, specificity, or false alarm rate:

TNR = 100
TN

TN + FP
. (2)

Both indicators have in common that the maximal score is achieved if all the stable, or unstable obser-
vations are predicted correctly, irrespective of how many false predictions from the opposite class are
made. For example, in the extreme limit one can simply achieve a high TPR by predicting all instances
as unstable. Note however, that this would in turn lead to a very low TNR as the number of FP would
increase dramatically. As shall become clear in the next section, it is therefore the combination of TPR
and TNR which can reveal interesting information about the model quality.

Instead of basing the metrics on correctness one may also characterize the performance in terms of
the relative error. This leads to the false positive and false negative rates (FPR, FNR):

FPR = 100
FP

TN + FP
= 100− TNR and FNR = 100

FN

TN + FP
= 100− TPR. (3)

Naturally, the error measures are simply complementary to the measures based on correctness. Given the
TPR and TNR from a data set, it becomes straightforward to answer questions regarding the likelihood
that an unstable or stable measured point would have been predicted as such. In this setting, one has
to ascertain that the size of the dataset is sufficiently large to obtain statistically relevant results.

Alternatively, one can wonder about the likelihood that an unstable or stable prediction will indeed
be correct. This question might be much more appropriate when assessing the actual usefulness of model
predictions. In this context, one may define the positive and negative predictive values:

PPV = 100
TP

TP + FP
and NPV = 100

TN

FN + TN
. (4)

Clearly, the PPV and NPV simply give the ratio of correct predictions from each class to total number
of predictions of the given class. Note that the difference between the true and negative rates on one
hand, and the positive and negative predictive values on the other, consists of using the column totals
(experiments) or row totals (simulations) of the contingency matrix as reference for a score. It should be
clear that a combination of TPR and TNR gives essentially the same information as combining the PPV
with the NPV . The reason for this is simply that all four matrix entries appear in both combinations.

The foregoing indicators are useful to quantify the prediction performance of a single class only,
independent on the other class. Nevertheless, the total performance irrespective of the specific class can
also be of interest. This is often termed the accuracy, and defined as the ratio of total correct predictions,
to total predictions and observations as

ACC = 100
TP + TN

TP + FP + FN + TN
. (5)

It is clear that a high accuracy can only be achieved when a model does not over- or underpredict the
(in)stability ranges. A short overview of the various measures is presented in table 4.

Metric Description
TPR Likelihood that unstable observations will be predicted correctly.
TNR Likelihood that stable observations will be predicted correctly.
FPR Likelihood that stable observations will be incorrectly predicted.
FNR Likelihood that unstable observations will be incorrectly predicted.
PPV Likelihood that unstable predictions will be correct.
NPV Likelihood that stable predictions will be correct.
ACC Overall accuracy of model irrespective of the specific class of the event.

Table 4: Overview of performance metrics and their meaning.

Notwithstanding the intuitiveness of the presented indicators one has to be aware of implicit subtleties.
The most important one relates to the fact that the measures are based on relative fractions. Because
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of this, their sensitivity to variations depend on the bias between the positive (stable) and negative
(unstable) instances (either predictions or simulations) in the data set. For example, the less observed
unstable points, the more sensitive the TPR is to wrong stable predictions (FN). At the same time the
sensitivity of the NPV for FN type errors decreases due to the additional FN ’s. One subtle consequence
is that the NPV can be high when the dataset has a high bias towards stability, even though the model
strongly overpredicts the stable ranges.

Let us now illustrate the various indicators for the two example problems. Figure 2 gives an overview
of the metrics for each case. Because for both examples virtually all unstable points were predicted
unstable the TPR scores are high. The TNR score however is much higher in the second case. This
is a result of the trend to overpredict the instability ranges in the first case, which leads to many false
positives. As shown, such overprediction also affects the PPV in a negative and the NPV in a positive
way. Finally, the accuracy scores then confirm the intuition that the second case is the most accurate.
It should be clear that the outlined method provides only a convenient tool to analyse the model quality
in a systematic way, but will not provide the user with answers about the exact reason why a model
performs good or bad.

In summary, the proposed quality indicators can be very useful in quantifying the model performance
in a precise way. In particular, the TPR, TNR, FPR, FNR, and ACC highlight different aspects of
model quality and provide convenient tools to assess the performance of a thermoacoustic model.

TPR TNR PPV NPV ACC
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Figure 2: The performance of the example cases, Grey: case 1. Black: case 2.

3 Experimental setup and model

In this section an overview is given of the experimental setup, the measurement procedure, and the
modeling approach.

The thermoacoustic configuration of interest is shown in figure 3a. The setup consists of a variable
length upstream duct L1 of 50 mm diameter, a burner deck, and a downstream duct L2 = 0.17 m with
a diameter of 90 mm and open end.

The (in)stability of the setup will in general depend on the burner, flow velocity, equivalence ratio,
area change, and the up- and downstream duct length. In our case, the (in)stability of the setup
is characterized for four different burners, three different burner flow velocities (velocity through the
burner area), and three different equivalence ratio’s. In total, this results in 4 × 3 × 3 = 36 different
cases. The details are given in table 5.

All burners used are of perforated plate type, with a thickness of 1 mm, and a hexagonal pattern of
holes in the central 50 mm diameter of the burner. The complete burner is then characterized by the
diameter of the holes D and the pitch between them P in mm. The total open areas Ab of the burners
are 267.04 (D2-P5), 342.43 (D2-P4.5), 431.18 (D3-P6), and 512.08 mm2 (D2-P3.5). Further information
about the burners and transfer functions can be found in [17].

Additional data from the experiments is obtained by various sensors located in the setup. Sound
recordings of the instabilities are made possible by a pressure transducer connected to the data acquisition
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Table 5: Overview of case parameters.

Parameter Range Unit
Burner D2-P5, D2-P4.5, D3-P6, D2-P3.5 D=Hole diameter, P=Pitch [mm]

Equivalence ratio 0.75, 0.85, 0.95
Velocity 80, 100, 120 [cm/s]

system. Furthermore, the burner deck temperature is measured by a N-type thermocouple while the
downstream temperature was measured by a R-type couple.

(a) (b)

Figure 3: (a) Experimental setup. (b) Acoustic network model.

3.1 Instability experiments

The basic instability measurement for each case consists of changing the tube length (L1) between
[8 70] cm by moving the piston with 63 steps of 1 cm. This measurement is made both in the upward,
and downward movement direction. In case an instability occurs, it is recorded for a 10 s period for
subsequent post processing. Following the actual experiments, the data is post processed in two steps.

First, the common instability peaks are selected from the up- and down measurements. Since hystere-
sis behaviour due to the nonlinearity of the flame can play an important role, the up- and down-stream
unstable points are not necessarily the same. In some cases a discrepancy of more than 10 points was ob-
served. This highlights an important question: which points to select as input for the model comparison.
Since the aim of the current paper is to define and illustrate a number of prediction quality measures
in a linear framework we only consider the common unstable points from the up- and down sets for the
experimental-model comparison. Note however, that the described methods may be very well applied to
do a more extensive comparison of the up- and down- sets using linear and especially non-linear models.

The second post-processing step consists of extracting the strongest frequency component from each
unstable recording. Finally, the results are stored as described earlier. Note that the total experimental
data set consists out 4× 3× 3× 63 = 2268 points.

3.2 Model

Various modelling approaches can be used to predict thermoacoustic instabilities. In general, one can
distinguish between lumped and non-lumped approaches and linear and nonlinear variants. In the current
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paper, we use a lumped linear model. To be more precise, when a system has relatively simple geometry
and the system’s streamwise dimensions are much larger than the transversal ones it can be assumed that
only one-dimensional wave propagation is present. In that case, so called acoustical 2-port models [18]
may be used to describe the network of interconnections of the various acoustic parts such as ducts,
flames and area changes.

For each of the elements the output variables, namely pressure p′ and velocity u′ are linked to the
input variables by linear equations. For signals with a harmonic time dependence in the form eiωt with
(complex) frequency ω = ωr + iωi these relations can be represented in a transfer matrix (TM) form[

f ′

g′

]
out

=

[
T11(ω) T12(ω)
T21(ω) T22(ω)

] [
f ′

g′

]
in

, (6)

where the up- and down-stream propagating waves f ′ = 1
2 ( p

′

ρc + u′) and g′ = 1
2 ( p

′

ρc − u
′) are a linear

combination of p′ and u′ . Note that f ′, g′, p′ and u′ are in general complex amplitudes of the acoustic
waves. Here ρ and c are the mean gas density and speed of sound, respectively.

An overview of the network model of the setup is given in figure 3b. For many acoustic elements the an-
alytical expressions for the acoustic transfer matrices are known [18]. For elements like the flame/burner
combination however, the transfer matrix should be measured by experiments. In addition, in order
to model the downstream wave propagation correctly it is desirable to have a good estimate of the
corresponding temperature distribution. These two items are treated separately in the next subsections.

3.2.1 Flame element.

Although it is possible to directly measure the TM of the flame burner combination it is a technically
complicated and challenging task [19]. An alternative method to obtain the TM is by using the linearized
Rankine-Hugionot equations in combination with a measured thermoacoustic transfer function F . This
F characterizes the flame heat release rate response q′ in W to acoustic velocity excitation u′ in m/s

F(ω) =
q(ω)′

u(ω)′
u

q
, (7)

where q and u denote the mean of the respective variables.
The measurement of the flame frequency response F(ωr) is a relatively straightforward procedure,

and shall not be treated here. For further information we refer to [20]. Note that the transfer functions
were measured for each individual burner and flow setting separately, resulting in 36 measured cases.
Following the frequency response measurement a rational transfer function is fitted to the measurement
data and incorporated in the TM linking the cold (2) and hot (3) sides[

f
g

]
3

=
1

2

[
ε+ 1 + θF ε− 1− θF
ε− 1− θF ε+ 1 + θF

] [
f
g

]
2

, (8)

where θ = T3

T2
− 1 the temperature ratio, and ε = ρ2c2

ρ3c3
, is the jump in specific acoustic impedance across

the flame.

3.2.2 Downstream temperature

The downstream temperature distribution due to the cooling of the flue gas in the outflow tube can play
an important role in the total thermoacoustic feedback loop because it directly influences the speed of
sound and the effective length of the tube. In order to be able to provide the model with the best input
data possible, the downstream temperatures are measured using a R-type thermocouple at three radial
positions: r = [0, 2.5, 4] cm, and six axial positions z = [2, 3, 6, 9, 12, 15] cm, with z the distance above
the burner deck. Furthermore, to exclude effects from short time flow fluctuations, every temperature
is obtained from averaging the thermocouple readings in a 10 s window (Fs = 1000 Hz). Finally, the
approximate axial temperature profile was constructed from the radial averages at each axial position.
Because the flow velocity, particular burnerdeck pattern, and equivalence ratio have a direct effect on
the downstream temperature the whole procedure was done for every case individually.
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In the model the downstream temperature profile is included by discretization of the duct in n = 10
isothermal ducts and corresponding temperature jumps, with section i defined as

T kd =
1

2

[
(εk + 1)e−iωLk/ck εk − 1

εk − 1 (εk + 1)eiωLk/ck

]
, (9)

with k = 1, .., n, εk = ρk−1ck−1

ρkck
, where ρ0c0 are taken from the element preceding the variable temperature

duct. Here, the temperatures of the isothermal ducts were defined as the measured temperature at the
location of the duct center, where linear interpolation was used in case this center was not an exact
measurement point. The total variable temperature profile can then simply be included by multiplying

the individual sections as Td =
∏k=(n−1)
k=0 Tn−kd .

3.2.3 Complete system

A complete system description can be obtained by matching the subsequent in- and outputs of the
elements. This leads to an overall system transfer matrix Ts = TdTfTaTu, with Tf the flame element,
Ta the area change, and Tu the upstream duct. Finally, the total set of system equations is obtained by
combining Ts with the up- and downstream reflection coefficients Ru and Rd,

1 −Ru 0 0
0 0 −Rd 1

Ts(1, 1) Ts(1, 2) −1 0
Ts(2, 1) Ts(2, 2) 0 −1



f1
g1
f5
g5

 = 0. (10)

Here the upstream reflection was determined via impedance measurements to be Ru ≈ 0.96 over the
frequency range of interest, while for the downstream reflection Rd the usual Levine-Schwinger relations
were used [21].

In order to determine the eigenfrequencies the non-trivial solutions of equation (10) have to be
found, which are given by the specific ω at which the determinant of the matrix (10) equals zero. The
solutions can be found numerically by applying the Nelder-Mead root finding algorithm on the resulting
equation [22]. The resulting Re(ω) denotes the eigenfrequency and Im(ω) the stability, with Im(ω) > 0
being exponentially stable.

For each individual combination of upstream length, burner, and flow setting, the foregoing procedure
yields a number of eigenfrequencies and corresponding eigenvectors. However, it is not uncommon that
more than one eigenfrequency is unstable. In this situation, only the mode with the largest |ωi| is
selected. The data is stored as described before.

4 Results

In the following two sections we illustrate the proposed quantitative measures of section 2.2.2 by using
them to (i) compare different burner cases using a single model, and (ii) to compare different models for
a single burner case. Thus two slightly different applications of the quality measures are considered.

4.1 Quality as function of burner

Here the goal is to apply the various measures to assess the different aspects of model quality, and discuss
their relevance. In order to keep the amount of information manageable, the results are evaluated on a
per burner basis. Consequently, all the cases per burner are assigned to the same contingency matrix,
and yield only one value for each of the presented performance metrics. The results per burner are shown
in figure 4-6 in order of increasing burner porosity. The example cases shown in figure 1a correspond to
(1) D2-P5, at Φ = 0.85 and V = 100 cm/s and (2) D3-P6, at Φ = 0.85 and V = 100 cm/s respectively.
Naturally, these cases form only a subset of the total data for the respective burners.

Observing the data for the the TPR and TNR in figure 4 it becomes clear that there are large differ-
ences between the four burners. Apparently the ability of the model to predict all observed instabilities
varies from 86% to only 54%. On the other hand, the percentage of experimentally stable cases which
were predicted stable varies from 38% to 97%. Comparing the TPR and TNR directly, it is clear that
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Figure 4: The (a) true positive rate (TPR) and (b) true negative rate (TNR) per burner.

an increase in the TNR seems to be directly related to a decrease in TPR. This in turn suggests that
the ability to correctly predict as many as possible unstable cases from the experimental set is in conflict
with doing the same for the stable cases.
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(b)

Figure 5: The (a) positive predictive value (PPV ) and (b) negative predictive value (NPV ), per
burner.

Considering the data for the PPV and NPV in figure 5a and b respectively, a slightly different
picture emerges. Clearly, the PPV also varies significantly across the cases, and increases from 50% to
85%. In contrast, the NPV fluctuates only lightly around 85%. Thus, it seems that the confidence one
can have in stable model predictions is roughly constant across the cases. In contrast, the certainty of
an unstable prediction being correct varies.

Finally, the accuracy measure shown in figure 6 indicates the combined prediction quality of unstable
and stable predictions. As shown, the accuracy increases for increasing porosity. Note that in essence
this reflects the combined data from the TPR, TNR, PPV and NPV plots.

In relation to the correctness of the predicted frequencies, it has to be noted that 79% of all correct
unstable predictions were within 8% of the observed frequency. This confirms that the upper bound on
the frequency error of 20% is only violated when the wrong mode is considered in which case it should
not be regarded as a correct unstable prediction.

Let us now relate the results for PPV , TNR and TPR and NPV to each other. Clearly, the low
porosity burners of the set have a high TPR coupled to a low TNR and PPV but with a relatively
high NPV . This can only be the result of over-predicting the instability ranges. In that case most of
the experimentally observed unstable ranges are captured well, giving a high TPR, but with many false
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Figure 6: The accuracy ACC per burner.

unstable predictions (overpredicting instability), leading to low TNR and PPV numbers. The NPV is
only affected little since compared to the total number of stable points relatively few false negatives are
made. A totally different situation is the high porosity burner D2-P3.5. In this case, a low TPR goes
together with a high TNR and PPV , which suggest over-prediction of stable cases. Contrary to what one
expects however, the NPV is equally high as the other cases. This is an example of the aforementioned
effect of difference in bias in the underlying datasets. Because there is a relatively large number of stable
compared to unstable cases, the NPV is not significantly affected by a few wrong stable predictions,
whereas the TPR is strongly influenced.

The results shown suggest that a single model may perform quite differently depending on which
specific burner is considered. More specifically, the overall accuracy of the model increases with increasing
porosity. At this stage it is not completely clear what the reason is for such dependence. Two possibilities
come to mind, namely (i) bias of input parameters, and (ii) relative sensitivity to parameter errors.

First of all, and as mentioned in section 2, there might be an inherent bias error in the parameters
used in the model. In this case, it is especially the flame transfer function and downstream temperature
measurement which could introduce errors. For example, a decreasing bias in the flame transfer function
measurement for increasing burner deck porosity might explain the observed trend. A similar statement
can be made for the temperature distribution. However, there is no obvious reason as to why such trend
in the bias might occur. Furthermore, it is the actual sensitivity of the model to the bias error in the
input parameter that determines how it will appear in the output quality. This is precisely the subject
of the second point.

A possible cause for the observed trend could be the difference in the relative role of model inaccuracies
compared to the accuracy probing parameter L1. To be more precise, let us give a fictive but illustrative
example. Suppose the ’real-world’ dependence of the stability indicator ωi can be written (locally)
around ωi = 0, as ωi(L1, T2, R2) = a(T2)L1 − R2, where a(T2) is the sensitivity of ωi to L1, and R2 is
the downstream end reflection coefficient. Note that it seems reasonable that a(T2) is a function of the
downstream temperature, since it determines the relative role of L1 compared to the total travelling time
in the system. Furthermore, decreasing or increasing the losses through reflection coefficient R2 will only
offset the ωi value. Next, we assume that in the model we underestimate the actual losses R2 by ∆R2

as R2 = R2 −∆R2. In such a setting, it can be easily checked that the range of L1 were the stability
is wrongly predicted will scale with a(T2)−1. And thus the presented quality measure will depend on
T2. In practice, such interactions occur between all of the model’s parameters. As a result, the accuracy
measure will tend to score higher when the sensitivity of stability to L1 is large compared to the model
inaccuracies. In this case, the increase in accuracy is not a direct result of higher porosity, but of the
implicit degree to which the different burners influence the sensitivity of the model to changes in L1.

Returning to the performance indicators themself, it was discussed that it is the combination of
the various measures which gives the most information about the quality properties of the model. In
this light, it is worthwhile to consider the TPR versus the FPR. This leads to points in the so called
receiver operating characteristic (ROC) plane, plotted in figure 7 for all four cases [16]. This plot further
illustrates the cost versus benefit trade-off that the combination of the FPR and TPR represent. For
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Figure 7: The TPR vs FPR. (◦) D2-P3.5, (♦) D3-P6, (×): D2-P4.5, (�) D2-P5.

example, the cost of having the high true positive rate in the D2-P5 case clearly is making a lot of false
positives, thus wrong unstable predictions. In the following section we shall explore this concept further
to illustrate model conservatism and how the ROC plane can be used to optimize a certain parameter
in the model.

4.2 Quality as function of model parameter

The ROC plane can provide a valuable tool in case one is interested in the model performance as
function of one of the models parameters. In particular, it is useful to assess the conservatism of a model
in predicting stable behaviour. It is the most intuitive to consider a model conservative if it is ’careful’
in assigning stability. From this viewpoint, a conservative model will score in the top right corner of the
ROC plane, with both a high FPR and high TPR rate. A model with liberal stability predictions on
the other hand, will score closer to the (FPR, TPR) = (0, 0) point, indicating a low TPR and FPR
rate. A perfectly accurate model will score near the top left corner, the (0, 100) point. In most practical
cases however, a model is not perfect, and creates points somewhere in the triangle spanned by the
(0, 0), (0, 100) and (100, 100) points. Thus, the closer the (FPR, TPR) points are to the (0, 100) point
the more accurate a model tends to be. In this setting, the most optimal choice of model parameters
will minimize the distance of the (FPR, TPR) score to the point (0, 100), representing the best possible
trade-off between having a high true positive rate combined with a low false positive rate.
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Figure 8: The TPR versus the FPR for different values of the upstream reflection coefficient R2.

In the current context we provide a simple example by investigating the effect of a varying amount
of acoustic radiation loss on the results for the D3-P6 burner. In particular, the upstream reflection
coefficient Ru is varied in the range between Ru = 0.5 and 1. The results in figure 8 clearly show the
drastic change which an increase in Ru causes. As can be expected, the model changes from very liberal
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for Ru < 0.85 to rather conservative for Ru = 1. Note a value of Ru ≈ 0.95 provides a good balance
between predicting all unstable points and over-predicting the unstable ranges. This value is remarkably
close to Ru = 0.96 which was measured using impedance measurements of the slitted piston and supports
the usefulness of using the ROC plot to further optimize a model based on experimental validation.

5 Conclusions

In this paper a suitable quality indicator for thermoacoustic (in)stability prediction is proposed. Such
indicator is desirable both from a practical, to assess large datasets, but also from a more fundamental
viewpoint to investigate the reliability of (in)stability predictions. We have shown that using binary
classification theory it is possible to define not only one, but a number of intuitive indicators to more
precisely quantify model performance.

More precisely, the TPR and FPR give information about the amount of experimentally unstable and
stable points which are predicted correctly. The PPV and NPV on the other hand can be interpreted
as the likelihood an unstable or stable prediction is correct. Finally, the ACC gives an accuracy measure
which does not distinguish in prediction quality between the two classes. Further insight can be gained
by plotting the indicators in an ROC plot, which provides an excellent tool to analyse the optimality of
the model, and investigate the trade-off between capturing all unstable points and making false unstable
predictions.

The methods are applied to analyse the prediction quality of linear network model for a large exper-
imental dataset. The data revealed large differences between the various burner cases, and disclosed a
trend of increasing accuracy with increasing porosity. The reasons for this are not clear yet, but it is
likely that parameter uncertainties relative to the probing parameter L1 play in important role. The
results indicate that a single model may perform quite differently for different burners and operating
conditions.

The presented results clearly highlight the requirement to carefully think about the particular purpose
of the thermoacoustic model. Depending on the exact modelling goal, different choices for the quality
indicator can be preferable. For example, if the target of the model is to guarantee stable operation
the NPV alone can be an appropriate indicator. Nevertheless, a high NPV can simply be obtained by
assigning all but a few points as unstable. Clearly, a high NPV rating alone has only limited applied
value.

From a practical viewpoint, it is important to realize that a conservative model which over-predicts
the unstable ranges will limit the set of allowable parameters for stable operation. In the context of
the current experiments, this means that the length range L1 for which stable operation is obtained is
in reality larger than predicted. Thus from a design perspective, a more logical modelling goal would
be to achieve very trustworthy stable predictions but without limiting the practical design freedom of
the parameter of interest too greatly. This demand is equivalent to a high NPV combined with a high
TNR, as it means that the certainty of stable prediction is high, without limiting the range of allowable
design parameters significantly. Note that this is similar to requiring a high TNR with a low FNR, in
which case the ROC plot of the TNR versus the FNR could be used.

From the perspective of the data analysis process, it should be remembered that the method provides
only a tool to assess quality and condense large amounts of data in a more suitable form for analysis. It
does not immediately provide the user with possible (deterministic) reasons for these trends. Hence it
should be viewed as an addition to current methods of analysis.

Finally, the approach is well suited to investigate the prediction quality of other, possibly more
advanced, thermoacoustic models. For instance, with a few modifications to the input data, it is possible
to compare the performance of a non-linear to a linear model. Given the amount of extra measurements,
e.g. flame describing functions, and hence time and work, needed to perform non-linear predictions, it is
worthwhile to investigate the relative improvement achieved in the predictions. The presented method
provides the tools to investigate this quantitatively.
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